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The Continued Fraction of e

While the decimal expansion of the Euler’s constant is not periodic, it also𝑒 =
𝑛 ∞
lim
→

(1 + 1
𝑛 )𝑛

does not seem to exhibit any clear patterns. In stark contrast to that, the simple continued fraction
of e, while also not periodic, has a very intriguing pattern: .𝑒 = [2, 1, 2, 1, 1, 4, 1, 1, 6, 1,  .  .  .]
The purpose of this note is to prove this identity, or more precisely to provide details to a proof
published in 1737 by Leonhard Euler.

The simple continued fraction expansion of e starts as . There is a[2, 1, 2, 1, 1, 4, 1, 1, 6, 1,  .  .  .]
pattern evident in the expansion: [2, 1, 2, 1, 1, 4, 1, 1, 6, 1, . . .] which continues for the rest of
the infinite continued fraction as will be shown later.

We will first write this continued fraction in a slightly different form:

(1)[1, 0, 1, 1, 2, 1, 1, 4, 1, 1, 6, 1,  .  .  .]

in order to make the pattern evident throughout the list notation. Note that although we usually
write the terms of the simple continued fraction expansion as integers greater than 0, we
temporarily relax that condition here in order to define a relationship between the partial
convergents of (1).

Notice that the following relationships hold for the terms of (1), for any integer :𝑛 ≥ 0

,𝑎
3𝑛

= 1

, and𝑎
3𝑛−1

= 1

, where the terms defined by are an arithmetic subsequence of𝑎
3𝑛−2

= 2(𝑛 − 1) 𝑎
3𝑛−2

(1) written explicitly.

For any continued fraction we can compute the ith partial convergent where[𝑎
0
, 𝑎

1
, 𝑎

2
,  .  .  .]

𝑝
𝑖

𝑞
𝑖

and can be calculated recursively using the following equations:𝑝
𝑖

𝑞
𝑖

and (2)𝑝
𝑛

= 𝑎
𝑛
𝑝

𝑛−1
+ 𝑝

𝑛−2
𝑞

𝑛
= 𝑎

𝑛
𝑞

𝑛−1
+ 𝑞

𝑛−2

where .𝑝
−1

= 1 ,  𝑝
0

= 𝑎
0 

 ,  𝑞
−1

= 0 ,  𝑞
0

= 1

For the continued fraction expansion of (1), we compute several partial convergents below:



i 0 1 2 3 4 5 6 7 8 9 10 11

𝑝
𝑖

1 1 2 3 8 11 19 87 106 193 1264 1457

𝑞
𝑖

1 0 1 1 3 4 7 32 39 71 465 536

𝑝
𝑖

𝑞
𝑖

1
1

d.n.e 2
1

3
1

8
3

11
4

19
7

87
32

106
39

193
71

1264
465

1456
536

Upon examining the table above, we observe that and appear to satisfy the following𝑝
𝑖

𝑞
𝑖

recurrence relation, where is a stand in for or :𝑟
𝑖

𝑝
𝑖

𝑞
𝑖

,𝑟
3𝑛

= 𝑟
3𝑛−1

+ 𝑟
3𝑛−2

,𝑟
3𝑛−1

= 𝑟
3𝑛−2

+ 𝑟
3𝑛−3

.𝑟
3𝑛−2

= 2(𝑛 − 1)𝑟
3𝑛−3

+ 𝑟
3𝑛−4

We can prove this observation by (2):

We know that for all s.t. , , and . By substituting into (2), we𝑎
3𝑛

𝑛 ∈ ℤ+ ∪ {0} 𝑎
3𝑛

= 1 𝑎
3𝑛−1

= 1

get
,𝑟

3𝑛
= 𝑟

3𝑛−1
+ 𝑟

3𝑛−2

.𝑟
3𝑛−1

= 𝑟
3𝑛−2

+ 𝑟
3𝑛−3

Since , it follows that𝑎
3𝑛−2

= 2(𝑛 − 1)

.𝑟
3𝑛−2

= 2(𝑛 − 1)𝑟
3𝑛−3

+ 𝑟
3𝑛−4

Therefore, this relation holds for .𝑛 ∈ ℤ+ ∪ {0}

If we can somehow use this recurrence in order to compute from , from and𝑟
3𝑛

𝑟
3𝑛−3

𝑟
3𝑛−3

𝑟
3𝑛−6

so on, we would be able to compute the sixth partial convergent from the third, the ninth from
the sixth, and so on. This subsequence of partial convergents obtained from calculating every
three convergents converges to the same real number as the entire sequence of partial
convergents. Therefore, our goal will be to collapse the recurrence relation found above into one
recurrence that uses and only.𝑟

3𝑛
, 𝑟

3𝑛−3
,  𝑟

3𝑛−6

We have:

𝑟
3𝑛

= 𝑟
3𝑛−1

+ 𝑟
3𝑛−2



= 𝑟
3𝑛−2

+ 𝑟
3𝑛−3

+ 𝑟
3𝑛−2

= 2𝑟
3𝑛−2

+ 𝑟
3𝑛−3

= 2[(2𝑛 − 2)𝑟
3𝑛−3

+ 𝑟
3𝑛−4

] + 𝑟
3𝑛−3

= (4𝑛 − 4)𝑟
3𝑛−3

+ 2𝑟
3𝑛−4

+ 𝑟
3𝑛−3

(3)= (4𝑛 − 3)𝑟
3𝑛−3

+ 2𝑟
3𝑛−4

Expanding our recurrence relation for the next few iterations:

,𝑟
3𝑛−3

= 𝑟
3𝑛−4

+ 𝑟
3𝑛−5

.𝑟
3𝑛−4

= 𝑟
3𝑛−5

+ 𝑟
3𝑛−6

From this we get:

, which leads to [rearrange ]𝑟
3𝑛−5

= 𝑟
3𝑛−3

− 𝑟
3𝑛−4

𝑟
3𝑛−3

= 𝑟
3𝑛−4

+ 𝑟
3𝑛−5

, so we obtain𝑟
3𝑛−4

= 𝑟
3𝑛−3

− 𝑟
3𝑛−4

+ 𝑟
3𝑛−6

𝑟
3𝑛−4

= 𝑟
3𝑛−5

+ 𝑟
3𝑛−6

(4)2𝑟
3𝑛−4

= 𝑟
3𝑛−3

+ 𝑟
3𝑛−6

Combining (3) and (4) we get:

𝑟
3𝑛

= (4𝑛 − 3)𝑟
3𝑛−3

+ 𝑟
3𝑛−3

+ 𝑟
3𝑛−6

, so finally= (4𝑛 − 2)𝑟
3𝑛−3

+ 𝑟
3𝑛−6

(5)𝑟
3𝑛

= 2(2𝑛 − 1)𝑟
3𝑛−3

+ 𝑟
3𝑛−6

Set and for all .𝑥
𝑛

= 𝑝
3𝑛

𝑦
𝑛

= 𝑞
3𝑛

𝑛 ≥ 0

Using the collapsed recurrence relation (5), we can now calculate and for some small𝑥
𝑛
,  𝑦

𝑛
,

𝑥
𝑛

𝑦
𝑛

values of n:

n 0 1 2 3 4 . . .

𝑥
𝑛

1 3 19 193 2721 . . .

𝑦
𝑛

1 1 7 71 1001 . . .

𝑥
𝑛

𝑦
𝑛

1 3 2.714… 2.71830… 2.7182817… . . .



Notice that the terms of the sequences follow the recurrence defined below, where is a𝑥
𝑛
,  𝑦

𝑛
𝑧

𝑛

stand in for or .𝑥
𝑛

𝑦
𝑛

for all n > 2. (6)𝑧
𝑛

= 2(2𝑛 − 1)𝑧
𝑛−1

+ 𝑧
𝑛−2

Integral Sequences

Our goal now is to show that the limit of the partial convergents (i.e. the limit of the sequence of

as n approaches infinity) approaches e.
𝑥

𝑛

𝑦
𝑛

In order to show that , we will define a sequence of real numbers . by
𝑛 ∞
lim
→

𝑥
𝑛

𝑦
𝑛

= 𝑒 𝑇
0 

,  𝑇
1
,  𝑇

2
...

the following integrals:

.𝑇
𝑛

=
0

1

∫ 𝑡𝑛(𝑡−1)𝑛

𝑛! 𝑒𝑡𝑑𝑡

In order to get a better idea of what these terms are, we compute the first two terms of the
sequence , namely and .𝑇

𝑛
𝑇

0
𝑇

1

Evaluating we get:𝑇
0

.𝑇
0

=
0

1

∫ 𝑒𝑡𝑑𝑡 = 𝑒𝑡|
0
1 = 𝑒 − 1

Now we compute , where:𝑇
1

.𝑇
1

=
0

1

∫ 𝑡(𝑡 − 1)𝑒𝑡𝑑𝑡

To evaluate this integral we will need to do integration by parts twice. For the first integration by

parts, let and . Then, and . So, we get𝑢 = 𝑡(𝑡 − 1) 𝑑𝑣 = 𝑒𝑡𝑑𝑡 𝑣 = 𝑒𝑡 𝑑𝑢 = (2𝑡 − 1)𝑑𝑡

.𝑇
1

= 𝑡(𝑡 − 1)𝑒𝑡|
0
1 −

0

1

∫ 𝑒𝑡(2𝑡 − 1)𝑑𝑡

Since the integral is evaluated from 0 to 1, will evaluate to 0. So,𝑢𝑣

.𝑇
1

=  −
0

1

∫ 𝑒𝑡(2𝑡 − 1)𝑑𝑡



Using integration by parts again, setting and , we get and𝑢 = 2𝑡 − 1 𝑑𝑣 = 𝑒𝑡𝑑𝑡 𝑣 = 𝑒𝑡

. We now calculate:𝑑𝑢 = 2𝑑𝑡

𝑇
1

=  − [(2𝑡 − 1)𝑒𝑡|
0
1 −

0

1

∫ 2𝑒𝑡𝑑𝑡]

=  − [(2 · 1 − 1)𝑒1 − (2 · 0 − 1)𝑒0 − 2𝑒𝑡|
0
1]

=  − [𝑒 + 1 − (2𝑒1 − 2𝑒0)]
=  − [𝑒 + 1 − 2𝑒 + 2)]

. So,=  − 𝑒 − 1 + 2𝑒 − 2
𝑇

1
=  𝑒 − 3

Looking closely at these terms, we can see that since and , and𝑇
0

=  𝑦
0
𝑒 −  𝑥

0
𝑥

0
= 1 𝑦

0
= 1

since and . If this relationship, , holds for all n,𝑇
1

=  𝑦
1
𝑒 −  𝑥

1
𝑥

1
= 3 𝑦

1
= 1 𝑇

𝑛
=  𝑦

𝑛
𝑒 −  𝑥

𝑛

then . It would then suffice to show that to prove the
𝑛 ∞
lim
→

𝑥
𝑛

𝑦
𝑛

=
𝑛 ∞
lim
→

(𝑒 −
𝑇

𝑛

𝑦
𝑛

)
𝑛 ∞
lim
→

𝑇
𝑛

= 0

continued fraction expansion does in fact converge to e. (Note that ).
𝑛 ∞
lim
→

𝑦
𝑛

= ∞

In order to show that holds for all n, we will first prove that the recurrence𝑇
𝑛

=  𝑦
𝑛
𝑒 −  𝑥

𝑛

relations (6) found for and in fact hold for .𝑥
𝑛

𝑦
𝑛

𝑇
𝑛

In order to do this, we first need to simplify . We will do so by performing integration by parts𝑇
𝑛

twice. Recall that

.𝑇
𝑛

=
0

1

∫ 𝑡𝑛(𝑡−1)𝑛

𝑛! 𝑒𝑡𝑑𝑡

Let and . Then and𝑢 = 𝑡𝑛(𝑡−1)𝑛

𝑛! 𝑑𝑣 = 𝑒𝑡𝑑𝑡 𝑣 = 𝑒𝑡

.𝑑𝑢 = 𝑑
𝑑𝑡 [ 𝑡𝑛(𝑡−1)𝑛

𝑛! ] = 𝑛𝑡𝑛−1(𝑡−1)𝑛+𝑡𝑛𝑛(𝑡−1)𝑛−1

𝑛! 𝑑𝑡 = 𝑡𝑛−1(𝑡−1)𝑛+𝑡𝑛(𝑡−1)𝑛−1

(𝑛−1)! 𝑑𝑡

So,

.𝑇
𝑛

= 𝑡𝑛(𝑡−1)𝑛

𝑛! 𝑒𝑡|
0
1 −

0

1

∫ 𝑡𝑛−1(𝑡−1)𝑛+𝑡𝑛(𝑡−1)𝑛−1

(𝑛−1)! 𝑒𝑡𝑑𝑡

Notice that evaluates to 0 because when , and when𝑢𝑣|
0
1 = 𝑡𝑛(𝑡−1)𝑛

𝑛! 𝑒𝑡|
0
1 𝑡 = 1 (𝑡 − 1)𝑛 = 0

, . Thus,𝑡 = 0 𝑡𝑛 = 0



.𝑇
𝑛

=  −
0

1

∫ 𝑡𝑛−1(𝑡−1)𝑛+𝑡𝑛(𝑡−1)𝑛−1

(𝑛−1)! 𝑒𝑡𝑑𝑡

Now we will use integration by parts again. Let and . Then𝑢 = 𝑡𝑛−1(𝑡−1)𝑛+𝑡𝑛(𝑡−1)𝑛−1

(𝑛−1)! 𝑑𝑣 = 𝑒𝑡𝑑𝑡

and𝑣 = 𝑒𝑡

𝑑𝑢 = 𝑑
𝑑𝑡 [ 𝑡𝑛−1(𝑡−1)𝑛+𝑡𝑛(𝑡−1)𝑛−1

(𝑛−1)! ]

= 𝑑
𝑑𝑡 [ 𝑡𝑛−1(𝑡−1)𝑛

(𝑛−1)! ] + 𝑑
𝑑𝑡 [ 𝑡𝑛(𝑡−1)𝑛−1

(𝑛−1)! ]

= (𝑛−1)𝑡𝑛−2(𝑡−1)𝑛+𝑛(𝑡−1)𝑛−1𝑡𝑛−1

(𝑛−1)! + 𝑛𝑡𝑛−1(𝑡−1)𝑛−1+𝑡𝑛(𝑛−1)(𝑡−1)𝑛−2

(𝑛−1)!

= 𝑡𝑛−2(𝑡−1)𝑛+𝑡𝑛(𝑡−1)𝑛−2

(𝑛−2)! + 𝑛𝑡𝑛−1(𝑡−1)𝑛−1+𝑛𝑡𝑛−1(𝑡−1)𝑛−1

(𝑛−1)!

Notice, when computing , the expression vanishes as we have𝑢𝑣|
0
1 = 𝑡𝑛−1(𝑡−1)𝑛+𝑡𝑛(𝑡−1)𝑛−1

(𝑛−1)! 𝑒𝑡|
0
1

seen in the integration above because of the bounds of the integral. So,

𝑇
𝑛

=  
0

1

∫( 𝑡𝑛−2(𝑡−1)𝑛+𝑡𝑛(𝑡−1)𝑛−2

(𝑛−2)! + 𝑛𝑡𝑛−1(𝑡−1)𝑛−1+𝑛𝑡𝑛−1(𝑡−1)𝑛−1

(𝑛−1)! )𝑒𝑡𝑑𝑡

=  
0

1

∫ 𝑡𝑛−2(𝑡−1)𝑛+𝑡𝑛(𝑡−1)𝑛−2

(𝑛−2)! 𝑒𝑡𝑑𝑡 + 2𝑛
0

1

∫ (𝑡−1)𝑛−1𝑡𝑛−1

(𝑛−1)! 𝑒𝑡𝑑𝑡

=  
0

1

∫ 𝑡𝑛−2(𝑡−1)𝑛−2

(𝑛−2)! [(𝑡 − 1)2 + 𝑡2]𝑒𝑡𝑑𝑡 + 2𝑛𝑇
𝑛−1

=  
0

1

∫ 𝑡𝑛−2(𝑡−1)𝑛−2

(𝑛−2)! 𝑒𝑡[2𝑡2 − 2𝑡 + 1]𝑑𝑡 + 2𝑛𝑇
𝑛−1

=  
0

1

∫(2𝑡2 − 2𝑡) 𝑡𝑛−2(𝑡−1)𝑛−2

(𝑛−2)! 𝑒𝑡𝑑𝑡 +
0

1

∫ 𝑡𝑛−2(𝑡−1)𝑛−2

(𝑛−2)! 𝑒𝑡𝑑𝑡 + 2𝑛𝑇
𝑛−1

=  2
0

1

∫ 𝑡(𝑡−1)𝑡𝑛−2(𝑡−1)𝑛−2

(𝑛−2)! 𝑒𝑡𝑑𝑡 + 𝑇
𝑛−2

+ 2𝑛𝑇
𝑛−1

=  2
0

1

∫ 𝑡𝑛−1(𝑡−1)𝑛−1

(𝑛−2)! 𝑒𝑡𝑑𝑡 + 𝑇
𝑛−2

+ 2𝑛𝑇
𝑛−1



. So we finally get that=  2(𝑛 − 1)𝑇
𝑛−1

+ 𝑇
𝑛−2

+ 2𝑛𝑇
𝑛−1

, (7)𝑇
𝑛

=  2(2𝑛 − 1)𝑇
𝑛−1

+ 𝑇
𝑛−2

which is the recurrence we were looking for.

Induction

Now that we have shown that satisfies a recurrence relation (7) similar to (6), we will use𝑇
𝑛

induction to prove that

(8)𝑇
𝑛

=  𝑦
𝑛
𝑒 −  𝑥

𝑛

holds for all n.

As we showed earlier, (8) holds for We want to show for .𝑛 = 0 & 1. 𝑇
𝑛

=  𝑦
𝑛
𝑒 −  𝑥

𝑛
𝑛 ≥ 2

We have our base cases:
,𝑇

0
= 𝑦

0
𝑒 − 𝑥

0

.𝑇
1

= 𝑦
1
𝑒 − 𝑥

1

So we can formulate an inductive hypothesis that

𝑇
𝑘

=  𝑦
𝑘
𝑒 −  𝑥

𝑘

Holds for some .𝑘 ∈ ℤ
+

We want to show:
𝑇

𝑘+1
=  𝑦

𝑘+1
𝑒 −  𝑥

𝑘+1

Notice, by the recurrence relation (6) we have:

𝑦
𝑘+1

= 2(2(𝑘 + 1) − 1)𝑦
𝑘+1−1

+ 𝑦
𝑘+1−2

= (4𝑘 + 2)𝑦
𝑘

+ 𝑦
𝑘−1

and . We also know that by setting𝑥
𝑘+1

= (4𝑘 + 2)𝑥
𝑘

+ 𝑥
𝑘−1

𝑇
𝑘+1

= (4𝑘 + 2)𝑇
𝑘

+ 𝑇
𝑘−1

in (7).𝑛 = 𝑘 + 1

If we can show that we will be done.𝑇
𝑘+1

= ((4𝑘 + 2)𝑦
𝑘

+ 𝑦
𝑘−1

)𝑒 − (4𝑘 + 2)𝑥
𝑘

+ 𝑥
𝑘−1



We have:

((4𝑘 + 2)𝑦
𝑘

+ 𝑦
𝑘−1

)𝑒 − (4𝑘 + 2)𝑥
𝑘

+ 𝑥
𝑘−1

=

= (4𝑘 + 2)𝑦
𝑘
𝑒 − (4𝑘 + 2)𝑥

𝑘
+ 𝑦

𝑘−1
𝑒 + 𝑥

𝑘−1

= (4𝑘 + 2)(𝑦
𝑘
𝑒 − 𝑥

𝑘
) + 𝑦

𝑘−1
𝑒 + 𝑥

𝑘−1

= (4𝑘 + 2)𝑇
𝑘

+ 𝑇
𝑘−1

by the recurrence relation (7).= 𝑇
𝑘+1

This completes the induction, thus, we have shown that holds for all n.𝑇
𝑛

=  𝑦
𝑛
𝑒 −  𝑥

𝑛

It is left to show that . This can be accomplished by showing that
𝑛 ∞
lim
→

(𝑒 −
𝑇

𝑛

𝑦
𝑛

) = 𝑒

.
𝑛 ∞
lim
→

𝑇
𝑛

= 0

Notice that we have by definition:

𝑛 ∞
lim
→

𝑇
𝑛

=
𝑛 ∞
lim
→ 0

1

∫ 𝑡𝑛(𝑡−1)𝑛

𝑛! 𝑒𝑡𝑑𝑡

Upon inspecting the integrand, we can see that the integral cannot exceed . This is because the𝑒
𝑛!

largest value that can take on is 1. Similarly, the largest value that can take on is also𝑡𝑛 (𝑡 − 1)𝑛

1 and will have a maximum of e. We can also observe that the value of the integral will never𝑒𝑡

go below as (the only possibly negative factor) is never smaller than -1, while−𝑒
𝑛! (𝑡 − 1)𝑛 𝑡𝑛𝑒𝑡

is bounded from above by e. Thus we have determined that the desired limit must be between the
limits of the identified bounds and . So,−𝑒
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Thus, the limit must evaluate to 0.

Therefore,
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Therefore, the sequence of partial convergents approaches e, and thus we have shown that the
𝑥
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continued fraction expansion [2, 1, 2, 1, 1, 4, 1, 1, 6, 1, …] does in fact converge to e.


