KLINGEN EISENSTEIN SERIES CONGRUENCES AND MODULARITY

TOBIAS BERGER, JIM BROWN, AND KRZYSZTOF KLOSIN

ABSTRACT. We construct a mod £ congruence between a Klingen Eisenstein series (associated to a
classical newform ¢ of weight k) and a Siegel cusp form f with irreducible Galois representation. We
use this congruence to show non-vanishing of the Bloch-Kato Selmer group H}(Q7 ad® ps(2 — k) ®
Q¢/Z¢) under certain assumptions and provide an example. We then prove an R = dvr theorem for
the Fontaine-Laffaille universal deformation ring of p, under some assumptions, in particular, that
the residual Selmer group H }(Q, ad® Py (k—2)) is cyclic. For this we prove a result about extensions
of Fontaine-Laffaille modules. We end by formulating conditions for when H}(Q,ad’p,(k — 2)) is
non-cyclic and the Eisenstein ideal is non-principal.

1. INTRODUCTION

The construction of Eisenstein congruences has a long and consequential history. Interesting in
their own right, their significance is amplified by the existence of Galois representations attached to
the congruent forms, as the ones attached to Eisenstein series are always reducible while the ones
attached to cusp forms are often irreducible. Using various generalizations of the result known as
Ribet’s Lemma, they lead to the construction of non-zero elements in Selmer groups. This direction
was first explored by Ribet himself in the context of the group GLg in [Rib76] and later used by
many other authors in a variety of different settings e.g. [Wil90], [Bro07], [SU14].

In a different direction, such congruences can play a crucial role in proving modularity of defor-
mations of reducible residual Galois representations p, see e.g. [SW97], [BK13], [BK20], [BK23],
[Cal06], [WWE20], and [Wak23]. In [Cal06] Calegari introduced a method of proving modularity
assuming p is unique up to isomorphism, which relies on proving the principality of the ideal of
reducibility of the universal deformation ring R of p. This method was developed further by Berger
and Klosin [BK11l BK13, BK20] and Wake and Wang-Erickson [WWE20] and successfully applied
in many contexts (see also [Ake23, [Hua23]). It relies heavily on the ideas of Bellaiche and Chenevier
[BCO9] and their study of Generalized Matrix Algebras (GMAs).

In this paper we pursue both of these directions in the case of Klingen Eisenstein series of level
one on the group Sp,. More precisely, let k£ > 4 be an even integer and ¢ a classical weight & Hecke
eigenform of level 1 (i.e., on the group GLy/q). Write Ei’l for the (appropriately normalized)
Klingen Eisenstein series on Sp, induced from ¢. It is a Siegel modular form of weight & and full
level. Congruences between Klingen Eisenstein series and cusp forms have been studied previously
by Katsurada and Mizumoto [KMI2| [Miz86] and Urban (unpublished). Katsurada and Mizumoto
obtain congruences as an application of the doubling method. In this paper, we produce congruences
via a much shorter argument using results of Yamauchi [Yam2I]. The trade-off is that while our
proof is much shorter, we obtain congruences only modulo a prime ¢ whereas Katsurada and
Mizumoto obtain congruences modulo powers of ¢. However, the hypotheses required for our
result are different and less restrictive than those needed in [KM12]. We show that under certain
conditions E;’l is congruent to some cusp form f of the same weight and level with irreducible Galois
representation (Theorem [3.5). This is the first main result of the paper. These congruences are
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governed by the numerator of the (algebraic part) of the symmetric square L-function L. (2k —
2,Sym?¢) of ¢. We also exhibit a concrete example when the assumptions of Theorem are
satisfied (see Example [3.6).

We then proceed to show that these congruences give rise (under some assumptions) to non-
trivial elements in the Selmer group Hy_j 1= H}(Q, ad py(2 — k) ® Q¢/Zy). Here py is the Galois
representation attached to ¢ by Deligne and we use the Fontaine-Laffaille condition at . Assuming
the Vandiver Conjecture for £ we also deduce the non-triviality of the Selmer group H } (Q,ad’ ps(2—
k) ® Q¢/Zy) (Corollary [5.9 and Remark [5.8)). This is our second main result and gives evidence for
new cases of the Bloch-Kato conjecture. This conjecture was studied for other twists of ad py by
[DFGO04] and [KIo09]. In [Urb01] Urban assumed the existence of Klingen Eisenstein congruences
to prove a result towards the main conjecture of Iwasawa theory for the adjoint L-function.

To properly analyze these Selmer groups we require some results on extensions of Fontaine-
Laffaille modules whose proofs appear to be absent in the literature. In Section [ we carefully
study certain aspects of Fontaine-Laffaille theory, in particular, prove the Hom-tensor adjunction
formula and give a precise definition of Selmer groups with coefficient rings of finite length.

Given the congruence Ei’l = f (mod ¢) we also study deformations of a non-semi-simple Galois

representation p : Gq — GL4(F,) whose semi-simplification arises from the Klingen Eisenstein
series. Such a representation is reducible with two 2-dimensional Jordan-Holder blocks and more
precisely one has

[ ]
Py(k —2)
Conjecturally such representations should arise as mod ¢ reductions of Galois representations at-

tached to Siegel cusp forms which are congruent to Ei’l mod ¢. We assume that dim Hy_[¢] = 1,
where [/] indicates ¢-torsion. This can be seen as a refinement of the uniqueness assumption of
[SWO7] similar to the one in [BK13] and as in [BK13| [Cal06] we prove the principality of the re-
ducibility ideal of the universal deformation. However, this principality cannot be achieved through
the method of [BK13| because the representation in question fails to satisfy the strong self-duality
property required for the method of [loc.cit.]. Instead we improve on a recent result of Akers [Ake23]
which replaces the self-duality condition with a one-dimensionality assumption on the Selmer group
Hy_o:= H}(Q, ad ps(k —2)) of the ‘opposite’ Tate twist of ad pg. With these assumptions in place
we are able to show that the universal deformation ring R is a discrete valuation ring and prove a
modularity result guaranteeing that the unique deformation of p indeed arises from a Siegel cusp
form congruent to E;’l (Theorem . This is the third main result of the paper.

We then proceed to formulate conditions for non-cyclicity of the Selmer group Hp_s. While
many results in the literature give bounds on the orders of Selmer groups (in particular, Corollary
m gives such a lower bound on Hjy_j), the structure of these groups is notoriously mysterious. In
this paper we prove that if the (local) Klingen Eisenstein ideal Jy, is not principal then Hy_o is
not cyclic (Corollary . We further refine this result by providing a criterion for non-principality
in terms of the depth of congruences between cusp forms and Ei’l (Corollary . An intriguing
feature of these results is that Hy_o is non-critical, i.e. this Selmer group is not controlled by a
critical L-value in the sense of Deligne.

The authors would like to thank Jeremy Booher and Neil Dummigan for helpful discussions.

2. BACKGROUND AND NOTATION

2.1. Galois representation. Given a field ' we denote by G its absolute Galois group. Fix a
rational prime ¢ > 2. If M is a topological Z;[Gr]-module (i.e. the Gp-action is continuous) we
set H'(F, M) to be the ith cohomology group of continuous cocycles.
For such M we set
MY = Homcont(M> Qﬁ/zﬁ)
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to be the Pontryagin dual of M and we will write M (n) = M ® € for the n-th Tate twist where €
denotes the ¢-adic cyclotomic character.

For each prime p, we fix an embedding Q — Qp. This is equivalent to choosing a prime p of Q
lying over p and fixes an isomorphism D), = Gq,,, where D), is the decomposition group of p. We
will denote by I, C D, the corresponding inertia group. We also fix an isomorphism Q, = C.

Let E denote a finite extension of Q; with valuation ring O, uniformizer A, and residue field F.

For a continuous homomorphism p : Gr — GL,(O) we write p : Gp — GL,(F) for the mod
A reduction of p. We note that given a continuous representation p : Gp — GL,(F) one can
always find a Gp-stable lattice inside its space and thus get a continuous homomorphism valued
in GL,,(O). While the isomorphism class of this homomorphism may depend on the choice of this
lattice, the semi-simplification of its reduction does not, so p** is always well-defined.

2.2. Siegel modular forms. Let n be a positive integer. Let Mat,, denote the affine group scheme
over Z of n x n matrices. For v € Mat,,, we write || for the determinant of v. Given a matrix
~v € Mato,, we will often write it as
_|ay by
' [Cv dv]

where the blocks are in Mat,,. We will denote by GL,, the affine group scheme over Z of invertible
n X n matrices. Recall that the degree n symplectic group is defined by

GSpy, = {9 € GLan : '9Jng = 1in(9)Jn, in(g) € GL1}
On _]—n
I, 0Op
homomorphism defined via the equation given in the definition. Write GSp;, (R)) for the subgroup
of GSps,,, (R) consisting of elements g with p,,(g) > 0. We set Spy,, = ker(u,,) and denote Sp,,,(Z) by
I';, to ease notation. Note that Spy = SLg, the subgroup scheme of GLy of matrices of determinant

one.
The Siegel upper half-space is given by

b, = {z = + iy € Mat,(C) : z,y € Mat,(R), 'z = 2,5 > 0}

where J, = [ ] where 1, is the n by n identity matrix, and p, : GLs, — GL; is the

where we write y > 0 to indicate that y is positive definite. The group GSp, (R) acts on b, via
vz = (ay2 +by)(cyz + dy) 7
Let f: b, — C be a function. Set

(f1e)(z) = ()™ 2 (3, 2) 7" f(72)
for v € GSp;, (R) and z € b, where j(v,z) = det(c,z + d,). A Siegel modular form of weight k
and level I';, is a holomorphic function f : b, — C satisfying

(fley)(2) = f(2)
for all v € I'y,. If n =1, we also require the standard growth condition at the cusp. We denote the

C-vector space of Siegel modular forms of weight k& and level I',, as My (T',). Any f € My(I',) has
a Fourier expansion of the form

f(z) =Y a(T; f)e(Tr(Tz))
TeA,

where A, is defined to be the set of n by n half-integral (diagonal entries are in Z, off diagonal are
allowed to lie in Z) positive semi-definite symmetric matrices and e(w) := e*™™. Given a ring
A C C, we write f € Mp(I'p; A) if a(T; f) € Afor all T € A,,.

We define the Siegel operator ® : My (I',,) — My(I',—1) by

@Ux@:ggf<ﬁ ﬂ).
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We say f € M(T'y,) is a cuspform if ®(f) = 0. Set Si(I',,) = ker(®).
We will now introduce certain Eisenstein series, which will play a prominent role in this paper.
For n > 1 and 0 < r < n define the parabolic subgroup

a1061 *

_ * U ok * a; by
Py = e 0 d % el |:Cl d1:| el ue GL,_.(Z)
0 0 0 f&t

We define projections

and
*: Py — Ty

ay bﬂ

*
thndel _[Cl d

These allow us to define the Eisenstein series of interest. Let ¢ € Si(I'1). The Klingen Eisenstein
series attached to ¢ is the series

B2 = Y e((v2))i(r,2) 7
vyeP> 1\I'2

where z € hy. The Eisenstein series converges for k& > 4, see [KIi90] Theorem 1 page 67 for example.
Note that [KI{90] Proposition 5 page 68 gives ®(E}") = ¢.

Given two Siegel modular forms fi, fo € My(I',) with at least one a cusp form, we define the
Petersson product of f; and fo by

o= [ RERE ey,
where z = x + iy with z = (24,8), ¥ = (Ya,8) € Mat,(R),
dpz = (dety) =D H dzo g H dya.3

a<p a<p

with dz, g and dy, g the usual Lebesgue measure on R.
Given vy € GSpj, (Q), we write T'(7) to denote the double coset I',7T,. We define the usual
action of T'(+y) on Siegel modular forms by setting

T(y)f = Z flrvi

where the 7; are given by the finite decomposition I';/T', =[], I'ny; and f € My (I'y). Let p be
prime and define Hecke operators

T (p) = T(diag(1n, pln))
and for 1 <3 <n set
T (p?) = T(diag(1n_s, ply, P*1n_s, p1y)).
The spaces My, (') and Sy (I',,) are both stable under the action of 7™ (p) and Ti(n) (p?)for1<i<n

and all p. We say a nonzero f € M;,(T,,) is an eigenform if it is an eigenvector of T (p) and Ti(n) (p?)
for all p and all 1 < i < n. As we will be focused on the case n = 2, we specialize to that case.
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We let T/ denote the Z-subalgebra of Endc(Si(I'2)) generated by the Hecke operators T (p) and
Tl(Z)(pz) for all primes p.

Recall that E/Q denotes a finite extension with valuation ring O and uniformizer A. Given
eigenforms fi, fo € My(T'y; O), we write fi =ev fo (mod A) if A\, (T) = A, (T) (mod A) for all
T € T' where Tf = )\fz (T)fl

Let f € Si(I'y) be an eigenform. Associated to f is a cuspidal automorphic representation 7y of
PGSpsy, (A), where A denotes the ring of adeles of Q. We can decompose 7¢ into local components
Ty = ®' T¢p, Where the tensor product is the restricted tensor product and runs over all primes
p with 77, an Iwahori spherical representation of PGSpy, (Q¢). The representation s, is given
as (X0, X1,---» Xn) for x; unramified characters of Q,. One can see Section 3.2 of [ASOI] for the
definition of this spherical representation. Let ag(p; f) = xo(p), ..., an(p; f) = xn(p) denote the
p-Satake parameters of f. Note these are normalized so that

ao(p; f)?ar(p; f) -+ om(p; f) = 1.

We drop f and/or p in the notation for the Satake parameters when they are clear from context.
. 2nk—n(n+1)
Set ag =p 1 o and

Ly(X, fispin) = (1-aoX) [T ] (- a0 - ai,X).

j=11<i1<<ij<n

The spinor L-function associated to f is given by

s, fispin) = HL =5, frspin) L.

The product converges for R(s) > k+ 1, has meromorphic continuation to the entire complex plane,
and satisfies a functional equation. We will be interested in the cases of n = 1 and n = 2. In the
case n = 1, we set

L(s,®) := L(s, ¢;spin).
Note that in this case
Lyp(p~*, ¢;spin) = (1 = Ag(p)p~* +p"7%%)

and we write \g(p) is the eigenvalue of T(p) := TV (p) corresponding to the eigenform ¢ € Sy, (T'1).
In the case that n = 2, one has

Ly(p~*, f,spin) =(1 = Af(0)p~° + (As(0)? = Ap(p; T2 (p2)) — p*F—H)p~2°
_ )\f(p)p2k—3—35 +p4k—6—4s)

where we write A\f(p) is the eigenvalue of T®)(p) corresponding to f and )\f(p;Tl(z) (p?)) for the
: (2)(,2 . :
eigenvalue T} (p”) corresponding to f.
In the n = 1 case we will also be interested in the symmetric square L-function attached to ¢:

L(s,Sym® ¢) = [ [ Ly(p~*, Sym® ¢) ™!
p

where
Ly(X,Sym? ¢) = (1 — ap>X)(1 — ap’a1 X)(1 — ap a?X).

The symmetric square L-function converges in the right half-plane R(s) > k, satisfies a functional
equation, and has analytic continuation to the entire complex plane.

The following result of Laumon and Weissauer attaches an ¢-adic Galois representation to any
eigenform f € S;(I'2).
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Theorem 2.1 ([Wei05] Theorem 1). Let f € Sk(I'2) be an eigenform. For a sufficiently large finite
extension F'/Qq one has Lqy(X, f,spin) € F[X] for all primes q # £ and there is a four dimensional
semisimple continuous representation
Pfow - GQ — GL4(F)
which is unramified outside of £ so that for q # £ one has
Ly(X, f;spin) = det(1 — pf o (Froby)X)
where w is the uniformizer of F'. The eigenvalues of py(Froby) are algebraic integers for q # L.

We will write py for ps when @ is clear from context.

3. CONGRUENCE

We keep the notation of section [2l Throughout this section we fix an even weight £ > 4 and an
odd prime ¢ and make the following assumption.

Assumption 3.1. Given an even weight £ > 4 and prime ¢ assume that E/Q is sufficiently
large to contain the fields F' from Theorem for all forms f € Si(I'2). We also assume that
for every eigenform ¢ € Si(I'1) the field E contains all the Hecke eigenvalues of ¢ as well as the
value Lag(2k — 2,Sym? ¢) (see for the definition). In addition we suppose that E contains a
primitive cube root of unity.

Recall that we denote the valuation ring of E by O. Let ¢ € Sk(I'1) be an eigenform and consider
the Klingen Eisenstein series Ei’l. In this section we show under certain conditions that Ez’l is

eigenvalue-congruent to a cuspidal Siegel modular form with irreducible Galois representation.
Write

E3Y(2) = TZ%Q(T; EZ)e(Tr(T2)).

For T that are singular, i.e., |T| = 0, one has T is unimodularly equivalent to [8 8] for some

n € Z>¢. For such T, one has a(T} E;l) = a(n; ¢) where ¢(z) =), ., a(n; d)e(nz).
We use the following result to prove our congruence.

Corollary 3.2 ([Yam21] Corollary 2.3). Assume £ > 7. Let g be a Hecke eigenform in My (I'2; O)
with Fourier expansion g(z) = ) rsqa(T;g)e(Tr(T2)). Assume that A | a(T;g) for all T with
|T| = 0 and that there exists at least one T' > 0 with a(T;g) € O*. Then there exists a Hecke
eigenform f € Sk(I'2; O) so that g =cv f FZev 0 (mod ).

m
r/2
positive integer f and where —A(T') is the discriminant of the quadratic field Q(1/—|2T"|). We set
XT = (ﬂ), the quadratic character associated to the field Q(1/—|2T).

Define

For T = [ T{f}, we say T is primitive if ged(m,n,r) = 1. We set [2T| = A(T)f? for a

Ip(z) = Z e(z(ma? + rab 4 nb?))
a,beZ?
= Z b(n;Vr)e(nz).
n>0
Given v € Z>1, set

1951})(2) = Z b(v?n; 97)e(nz).

n>0
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One can check that 9% € M;(T'(4/T|)) where T'(N) = ker (SLy(Z) — SLy(Z/NZ)) and Mj(T(N))
denotes the modular forms of weight £ and level I'(N). Set

D(s,6,9%") = 3 a(n; ¢)b(v*n; O7)n~>.
n>1

We have that D(s, qb,ﬁgpv )) converges in a right half-plane with meromorphic continuation to the
entire complex plane ([Shi76]). Set

L(2k — 2,Sym? ¢)

2 .
(3.1) Lo (2k —2,Sym” ¢) := 3 )
A(T)F=32L(k -1,
Lalg(k - 17XT) = ( ) ﬂ—k—(l T)a
and

D(k - 1a¢ﬂ9¥))

kg, ¢)
We have each of these terms is algebraic, see ([Shi76], [Stu80], [Zag77]). Moreover, we have via

[Zag77] Equation (22) that if £ > k — 1, then L (k — 1, x7) is f-integral.

Dalg(k - 17 ¢a19§3})) =

Theorem 3.3. [Miz84] Let ¢ € Sk(I'1) be a normalized eigenform with a Fourier expansion as
above. Let T' > 0 be primitive. We have

(k=1 i Laglk—1x1)
2k —2)1°  Log(2k — 2, Sym? §)

S Mr(im ) S () Dag (ke — 1,6, 0579)

o(T; B2 = (~1)H2

e !
where
Mrp(a) = p(d)xr(d)d* oo _3(ad ")
o
and
Us(d) = ng'
gld
g>0

Note that while this theorem is only stated for Fourier coefficients indexed by primitive T', we
have that Fourier coefficients indexed by non-primitive T" are an integral linear combination of
Fourier coefficients indexed by primitive 7' by [Miz84] Equation 1.3, so we only need to consider
the primitive T to guarantee the hypotheses of Corollary are satisfied.

We have the following congruence result.

Lemma 3.4. Assume £ > 4k — 7. Let f € Sp(I'2; O) be an eigenform. If there exists a normal-
ized eigenform ¢ € Sp(I'1;0) so that f =y E;’l (mod \) and that py is irreducible, then py is
irreducible.

Proof. We know via [Wei05] that if p; is reducible, then the automorphic representation associated
to f is either CAP or a weak endoscopic lift. Moreover, by [PS09] Corollary 4.5 since f € Si(I'2)
and k > 2, the automorphic representation attached to f can be CAP only with respect to the
Siegel parabolic, i.e., f is a classical Saito-Kurokawa lift. Suppose that f is a Saito-Kurokawa lift
of ¢ € Sor_o(I'1). Then we have ﬁjcs =Dy @1 @ k=2 where € is the mod ¢ reduction of the ¢-adic

cyclotomic character. Using the fact that f =, E;’l (mod \) and that the eigenvalues of E?;l are

given by A(p; E;l) = a(p; ¢) +p*~2a(p; ¢), the Brauer-Nesbitt and Chebotarev Theorems give that
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PT = Dy @Dy (k —2), where recall that we write p,(k —2) for py ® €2, This is a contradiction if P
is irreducible. Thus, f cannot be a Saito-Kurokawa lift. It remains to show that the automorphic
representation associated to f is not a weak endoscopic lift. The possible decompositions of ps
are given in [SU06] Theorem 3.2.1 under the assumption that ¢ > 4k — 7. Of these, the only case
remaining to check is Case B(v), which states if py = o @ ¢/ with ¢ and ¢’ both 2-dimensional,
then det(c) = det(o’). In our case, this would require det(py) = det(py(k — 2)), i.e., 1 =e*=3
which is impossible by our assumption that ¢ > 4k — 7. Thus, py is irreducible. O

Theorem 3.5. Assume that { > 4k — 7. Let ¢ € Sk(I'1; O) be a normalized eigenform. Suppose
that X | Lag(2k — 2,Sym? ¢). Furthermore, assume there exists Ty > 0 so that

valy (Lalg(Qk: — 2, Sym? ¢)a(To, Ej;l)) <0.
Then there exists an eigenform f € Si(I'2; O) so that

E;’l =ev (mod ).

If in addition py is irreducible, then py is irreducible.
Proof. Set H;’l(z) = Laig(2k — 2, Sym? gZ))E;’l(z). For T > 0, define
o(T) = valy(a(T; H3)).

Let ¢ = ming>o¢(T'). Since H;’l € My(T'2), the Fourier coefficients a(T" H;l) have bounded
denominators so ¢ is well-defined ([Shi75]). Moreover, our assumption that there is a Ty > 0 with

valy (a(To; H2')) = valy (Lalg(Zk — 2,Sym? ¢)a(T, Ejl)) < 0 gives that ¢ < 0. Set
G3l(2) = A\°H ' (2).

We have a(T} Gi’l) € O for all T > 0 since ¢(T)) — ¢ > 0 for all T > 0. Observe that for T with
|T'| =0, we have a(T; Gi’l) = A"®Laig(2k — 2,Sym? ¢)a(n; ¢) for some n € Z>¢. Since a(n;¢) € O
by assumption and —c > 0, this gives A | a(T; Gi’l) for all T with |T'| = 0, i.e., all the Fourier
coefficients indexed by singular 7' vanish modulo A. Moreover, since ¢ = ¢(T") for some T', we have
a(T; Gi’l) € O* for some T. Since ¢ < 0 and X | a(T; Gi’l) for all singular T, we have T > 0.
Thus, Corollary and the fact that Gi’l and E;’l have the same eigenvalues gives a non-trivial
eigenform f € Si(I'2; O) so that

E;’l =ev [ (mod N).
One now applies Lemma, to obtain that py is irreducible. O

Example 3.6. Consider the space Mayg(I'2). This space has dimension seven and is spanned by
E?0 (Siegel Eisenstein series), E;’l (Klingen Eisenstein series), three Saito-Kurokawa lifts, and two
non-lift forms T and Yo where here ¢ € Sa6(I'1) is the unique newform given by
¢(z) = e(z) — 48e(2z) — 195804e(3z) + - - .
We have via [Dum01] that
241163 - 187273
Laig (50, Sym? ¢) =
alg (50, Sym”¢) 326.510.77.114.132-172-19-232-29 - 31 - 37 - 41 - 43 - 47 - 657931

We consider ¢ € {163,187273}. We provide a different argument for each prime in producing an
example.
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The Klingen Eisenstein series associated to ¢ is given in the beta version of LMFDB. By consid-

0 0 0 0

, 1s given by

ering the Fourier coefficients indexed by {1 O] and [2 0] one can see that the Klingen Eisenstein

series given there, say EdleFDB
LMFDB
E¢ (2)

-~ 26.33.11-19-163 - 187273

We have from LMFDB that
G(T11/2] g 22.5-43
/2 1’7 )] 11-19-163- 187273
Consider Gi’l(z) = Laig(50, Sym? gb)Ei’l(z). We have for ¢ as above that ¢ | a(T’; GZ’l) for all T' with

|T| =0 and a <[1}2 1{2] ;G;J) # 0 (mod ¢). Thus by Theorem H there exists a non-trivial

Hecke eigenform f € Si(I's; Zy) with Ei’l =ev [ (mod 7).

Consider first the prime ¢ = 163 and suppose that @3163 = 1)1 @ Yy for some characters 11, 5.
Since p,, is unramified for all p # £ we see that ¥ and v are each an integer power of € (see the
proof of Lemma. As 163 1 a(163; ¢) we know ¢ is ordinary at 163 and we get D163 = 25 1.
By [Rib76] Proposition 2.1 we can find a lattice such that

_ 1 = _
Pp,163 = {0 E25] 21@e®.

One can use ordinarity of ¢ to show that * gives an unramified 163-extension of Q((163) (see
e.g. the proof of Theorem 4.28 in [BK23|.) By Herbrand’s Theorem this implies that 163 | Bag.

However, one can check this is not true, so we must have that p, 163 is irreducible and so E;’l must

be congruent (modulo 163) to a cuspform f that is not a Saito-Kurokawa lift, i.e. p; is irreducible
by Theorem One uses LMFDB to check that f = Ts.

Now consider the case that ¢ = 187273. In this case it is less practical to calculate a(187273; ¢),
so we directly eliminate the possibility that Ei’l is congruent to a Saito-Kurokawa lift modulo
187273. The space to consider is Ss50(I'1). This space has one Galois conjugacy class of newforms
consisting of three newforms, call them 11,2, and 3. Each newform has a field of definition Ky,
generated by a root «a; of

c(x) = 23 4+ 2422516827 — 5667469318103042 — 13634883228742736412672.

One has that A(2, Eil) = —805306416 and that A\(2,;) = 249 4+ 2% + ;. One uses SAGE to check
that )\(2,Eq25’1) Z A\(2,1;) (mod 187273), so Ei’l must be congruent to a cusp form that is not a
Saito-Kurokawa lift. One uses LMFDB to see that E;’l =ev 11 (mod 187273).

4. EXTENSIONS OF FONTAINE-LAFFAILLE MODULES

In this section we gather various facts (in particular Proposition and Proposition [4.24)) about
extensions of Fontaine-Laffaille modules, which we use in this article but which to the best of our
knowledge have not been published elsewhere.

4.1. Definitions. We keep our assumption that ¢ is an odd prime. We fix integers a, b such that
0 <b—a < ¢—2 In this section let E be an arbitrary finite extension of Q, with ring of integers
O, uniformizer A and residue field F. Write LCAp (respectively LCNp) for the category of local
complete Artinian (respectively Noetherian) O-algebras with residue field F. For a category C we
will write X € C to mean that X is an object of C.

Definition 4.1 ([Kall9] Definition 2.3/[Boo19] Definition 4.1).
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(1) A Fontaine-Laffaille module is a finitely generated Zg-module M together with a decreasing
filtration by Z;-module direct summands M* for ¢ € Z such that there exists k < [ with
M" = M for i < k and M1 = 0 for i > [, and a collection of Z,-linear maps ¢}, :
M" — M such that ¢|yi+1 = M)é\j}l for all i and M = >, ¢%,(M"). The category of
all Fontaine-Laffaille modules is denoted M F%l. Morphisms in this category are Zj-linear
maps f : M — N satisfying f(M?) C N* and f o ¢y, = ¢ o f|y for all i. We will write
MF/!

tor,Zy
(2) For a fixed interval [k, ] we denote the full subcategory of M F7f z, Whose objects M have a

filtration satisfying M* = M and M'*! =0 by MFr,fZ[i” for 7 € {0, tor}.
(3) For any A € LCAp, a Fontaine-Laffaille module over A consists of an object M € MF

tOI‘,ZZ
together with a map 6 : A — End Al (M) that makes M into a free finitely generated

tor,Z,

for the full subcategory whose objects are of finite length as a Zy,-modules.

[a,b]

module over A in such a way that M? is an A-direct summand of M for each i. A morphism
between two such objects is required to additionally preserve the A-structure. We will

denote this category of Fontaine-Laffaille modules over A as M th;’r[az’lﬁ ®z, A.

(4) For M e M thgr[ai? ®z, A any integer i for which M?/M**! =£ 0 is called a Fontaine-Laffaille
weight for M. The set of Fontaine-Laffaille weights for M will be denoted by FL(M).

Remark 4.2. We impose the stronger restriction on the length of the filtration as in [BK90] Section
4 and |[CHTOS] Section 2.4.1, compared to that in Section 1.1.2 of [DFGO04] or [Kall9] Definition
2.3 (which allow the length to be £ —1).

Remark 4.3. One can also replace Z; in MF?f’Z[Z’b] for 7 = (), tor by the integer ring Ok in

a finite unramified extension K of Q, and require that the maps gbZM are Frobenius-semilinear.
The modules M € MF! @ ®z, A need to be free modules over O ®z, A. Via the Fontaine-

Laffaille functor describg)c?obglow this gives rise to crystalline G i-representations, in particular the
equivalence between M Ftﬁazlj ®z, A and Repg;’[;b’fa](GQé) holds with Z, replaced by Ok and
Gq, replaced by Gk (see Theorem and [Kalf9] Theorem 2.10). As we will have no use for the
general case, to simplify the exposition, we restrict to Gq,-representations. We refer the reader to

[Boo19] Section 4.2 and [Kall9] Definition 2.3 and 2.8 for the general case.

Definition 4.4. We introduce the following examples of Fontaine-Laffaille modules:

(i) If 0 € [a,b] we write 1 € M Fé;[a’b} for the Fontaine-Laffaille module defined by 1° = Z, for
1 <0and 1* =0 for i > 0. We set ¢* : 1* — 1 to be given by z +— £~z for ¢ < 0.

(ii) For n € [a,b]NZ define M,, € M Ftﬂazl? to be the 1-dimensional F-vector space with filtration
M! = M,, = Fy for i <n, M"! =0 and ¢' : M} — M, the O-map for all i # n, and the
identity map for i = n.

(iii) For any A € LCAp we define M, 4 € MFtﬁaij ®z, A to be the free rank one A-module
equipped with the filtration MTiL,A = Afori<mn, Mg}l =0 and ¢' : f;’A — My, A given by

x— " ig for i <n. We put 14 = Mo 4.

Definition 4.5 ([Bool9] Definition 4.9). For M € MFtJ;’I[az’lj and s € Z define M (s) to be the same
underlying Z,-module, but change the filtration to M (s)? = M?~* for any i € Z. This means that

M(s) € MFg;jf’Z*‘g sibts]

4.2. Extensions. To ease notation in the rest of this section we put C,{x = Mth(;)’I“IZ,g ®z, A for
A € LCAp. Here I = [a,b].



KLINGEN EISENSTEIN SERIES CONGRUENCES AND MODULARITY 11

Definition 4.6 (Definition/Lemma). Given M, N € C} define a filtration on the A-module Hom 4 (M, N)
by
Hom (M, N)' = {f € Homa(M, N) | f(M?) C N7 for all j € Z}
and Zy-linear maps ¢' : Hom4 (M, N)* — Hom (M, N) by
&' ()@ (m) = 637 (f(m))
(note that M = qufw(M])) for f € Homa(M, N)" and all m € M7 and j € Z. We claim this

defines a Fontaine-Laffaille structure and we get

Homa (M, N) € MEL " @, A,

Proof. First note that there exists a canonical A-module homomorphism ¢ : MY®@ 4N — Hom4 (M, N),
where M"Y = Homy (M, A). Definition 4.19 in [Bool9] defines a Fontaine-Laffaille structure on M"Y

(and Lemma 4.20 and 4.21 prove that this structure is well-defined and so we get an object in
M Ft];r[jzblj*a] ®z, A). Definition 4.17 in [Bool9] then gives us the Fontaine-Laffaille structure on
MY @4 N.

We claim that transferring this structure on MY ®4 N via ¢ to Homu (M, N) matches our
definition.

Recall from [Bool9| that
(M) = {f € Homa (M, A)|f(M*) c 157" for all k € Z}
and
(MY @N)" = > (M) @4 N,
i+j=n

We will first show that ¥((MY ® N)®) C Homa(M,N)". Let fi @ n; € (MY) ®4 N7. Then
V(fi®@nj) :m e M* — f;(m)n; € NJ. In fact, the image lies in N"**. This is clear for j > n + k.
If j < n+k (and hence 0 < i + k) it follows since f;(m) € 157" = 0. To show the reverse inclusion
(MY @ N)") D Homy (M, N)" consider f € Hom4 (M, N)™ and let j be maximal among integers
I such that f(M) C N'. To satisfy f(M"*) c N**" for all integers k we need f(M*) = 0 for

k+n > j by maximality of j. This means that we need f to factor through M/MY ¢ for i :=n—j.
By [Bool9] Lemma 4.20 we have (M")? = Hom (M /M=% A) so we get

; ; . P . ;
(MY)' ® N7 = Homa(M/M"" A) ® N7 = Homa(M/M"™", N7).
We conclude that f € ' ((MY)! @ N7) C (MY @ N)™).
Now we check the Zs-linear maps: Recall from [Bool9] that for f € MY we have
Sy () (hy(m)) = 67 (f(m)
for all m € M7 and j € Z. We also have
¢T](/[V®AN = Z dﬁ\/[v ® ‘bg\/
i+j=n

We claim that

gz)TI‘ZIomA(M,N) oY =1o ¢T]\ZJ\/®AN : (Mv X N)n — HOIHA(M, N)
For this one calculates that both sides map f®n € (MY)*® N™~* to the homomorphism, for which
0 ifi+k>0

Faa(m) {dﬁrk(f(m)x) ifi+k<o0
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for any m € M* (for Yol v , v this uses ¢7V+k|Nn—i = E’”id)?v_i for i+k < 0). This claim, combined

with the results in [Bool9] shows that the definition of ¢fy (M,N) 18 well-defined and satisfies the

requirements for Hom4 (M, N) to be a Fontaine-Laffaille module in M Ft{iaz_e bb=a] ®z, A. O

For M, N € C} consider the map ¢ — 1 : Homu (M, N)? — Hom(M, N) which takes f to the
homomorphism that sends m =3 ¢ (mj) to

S ON(Fmy)) = fm) =3 (Gh(F(my) = F(&4,(my))) .

J
Note that ker(¢ — 1) = Hompr (M, N).

Proposition 4.7 (J[CHTO0S] Lemma 2.4.2, [Kall9] Proposition 2.17). Given M, N € Cl we have
an ezact sequence of A-modules (note that Hompy a(M, N) in [Kall9] equals Homa (M, N)°)

0 — Homg; (M, N) — Homu (M, N)° “5' Homy (M, N) — Ext?, (M, N) = 0.
A

Given M, N € Cl we write FL(M) > FL(N) if there is an integer j such that all elements of
FL(M) are greater than or equal to j, and all elements of FL(NN) are strictly less than j.

Proposition 4.8. The extension group Extél (M, N) is a finitely generated A-module. Furthermore
A
one has

(i) If FL(M) > FL(N) then Ext(lj, (M,N) = Homyu (M, N), in particular it is a free A-module
A
and rk 4 (Extp; (M, N)) = rka(M)rka(N).
A
(ii) If FL(M) < FL(N) then ExtéA(M, N) =0.

Proof. This follows from Proposition In particular, Exté ! (M, N) is a quotient of the finitely
generated A-module Homy (M, N). The calculation on [Kall9] p. 238 (“two notable cases”) is
carried out for M Ft{i?ii_l} ®z, A, but applies verbatim to C4. If FL(M) > FL(N) then this
calculation shows that Hom 4 (M, N)? = 0, while if FL(M) < FL(V) then one gets Hom 4(M, N)° =
Homy (M, N). O

Proposition 4.9 (Hom-tensor adjunction). Let M, N € Cl. Assume that Hom4 (M, N) equipped
with the filtration as in Definition s an object in C,{l and that 0 € I. Then there exists a
canonical isomorphism of A-modules:

Extéix (M,N) = Extéﬁa A, Hom4 (M, N)).
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Proof. The statement follows from the existence of the following commutative diagram with exact
columns:

(4.1) 0 0
Homci(M,N) Homcﬁ(lA,HomA(M.N))

Homa (M, N)° —— Hom (14, Hom (M, N))°
-1 -1
Homa (M, N) —Y— Hom (A, Homa (M, N))

«

b
ExtéA (M,N) —— Extéi‘ (14,Hom4 (M, N))

0 0

The exactness of both columns follows from Proposition [£.7] The second horizontal arrow is the
usual isomorphism v of A-modules given by f +— (a — af) (recall that the underlying module of
the object 14 is A) with the inverse map sending g to g(1), where 1 is the multiplicative identity
of A.

The first horizontal arrow is the restriction ¢’ of 1) to Hom (M, N)° (note that Hom (M, N)? is
a subgroup of Homy (M, N) even though ¢ — 1 is not necessarily injective). We need to check that
1" lands in Hom 4 (14, Hom 4 (M, N))°. By its definition we need to check if f(lf;‘) C Homa(M, N).
If j > 0 there is nothing to check as then 1{4 = 0, so assume that j < 0. Then 1{4 = A
and Homy (M, N)? D Homa(M,N)°. So, it is enough to show that if f € Homa(M, N)° then
Y (f)(A) C Homa(M,N)°. Let a € A. Then '(f)(a) = af which clearly lies in Hom (M, N)° as
Hom (M, N)® is an A-module.

Now let g € Homa (14, Homa (M, N))°. We need to show that )~!(g) lands in Hom (M, N)°.
Again we need to consider wil(g)(lﬁ). If j > 0, then g = 0, hence we are done. Assume that
j < 0. Then lf4 = A and ¥ ~1(g) = g(1). As 1 €19 and g € Homa(14,Hom (M, N))° we must
have that g(1) € Homy4 (M, N)°. So, we are done again.

This shows that v’ is a bijection, hence an isomorphism. Hence by the second Four Lemma ¥ is
injective, and since it is clearly surjective, it is an isomorphism.

0

Remark 4.10. The proof of [Kall9] Proposition 2.17 defines (see also [DFG04] p. 711) the ho-
momorphism « : Homg (M, N) — Exté, (M, N) as follows: Given f € Homa (M, N) one defines an
A

extension N @ M as follows: The module is given by N @& M with filtration (N & M)* = N* @ M*
and ¢' : (N @ M)" — N @ M defined by

(n',m") = (& (n") + f(Phy (M), dhy (m)).
One can show that any extension in Extél (M, N) is of the form N@ ;M for some f € Homa (M, N).
- A
We note that v defined in the proof of the Proposition maps this extension to the extension
Hom (M, N) Basaf 1a.
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The commutative diagram (4.1]) shows that this is well-defined and gives an isomorphism
W Extpy (M, N) — Ext}; (14, Homu (M, N)).
A A

Let us now give an alternative description of the map . Starting with an extension
0N—-E—-M-=0

in C] (note that as an A-module it is isomorphic to N @ M as N and M are free and by [Kall9)
we know there exists f € Homa (M, N) such that it is explicitly given by N @¢ M), it gives rise to
an exact sequence as A-modules (where we use freeness to conclude right exactness)

0 — Homy (M, N) — Homu (M, E) — Homa (M, M) — 0.

This is an exact sequence in CII4 since the maps preserve the extra structure (exactness of sequences
in Cg is equivalent to exactness as A-modules). Now take the pullback of this extension with respect
to A < Homy (M, M). More specifically we have the following commutative diagram with exact
rOwWS:

(4.2) 0 —— Homu (M, N) —— (E) A + 0

lid \[w—) (m—am)

0 —— Homy (M, N) —— Hom4 (M, E) —— Hom (M, M) —— 0

This realizes ¢)(F) as a submodule of Hom4 (M, E) of in the following way:
(N @y M) = {h € Homa (M, N @& M)|3g € Homs(M, N),a € A such that h(m) = (g(m),am)}.

If one equips Hom(M, N &¢ M) with the C}-structure as in Definition 4.6/ one can check that U(E)
corresponds to

Hom (M, N) Gqisay 1.

4.3. Fontaine-Laffaille Galois representations. Fix an interval I = [a,b] with a,b € Z and
b—a < ¢ — 2. In this subsection we introduce certain categories of Gq,-representations and define
a covariant version Vj of the functor in [FL82] from the categories of Fontaine-Laffaille modules
defined in section to these categories of Galois representations.

Let Acis and Bgis denote the usual Fontaine’s (-adic period rings (see Definition 7.3 and 7.7
n [FO22] and [Fon82]). We recall that a Q/[Gq,]-module V is called crystalline if dimg, V =
dimq, H °(Qe,V ®Qq, Beris). Our convention is that the Hodge-Tate weight of the cyclotomic char-
acter is +1.

Definition 4.11. Let A € LCAp. We introduce the following categories:
(i) Repél(GQZ), the category of Zy[Gq,]-modules that are finitely generated as Z,-modules.

(ii) Rep{or?zl(GQz), the full subcategory of Repéz(GQZ) whose objects are required to be of finite
length as Z/[Gq,]-modules.

(iii) RepCZMSI(GQIV,)7 the full subcategory of Repéé(GQZ) whose objects are isomorphic to T/T",
where T'and T” are G q,-stable finitely generated submodules of a crystalline Q-representation
with Hodge-Tate weights in 1.

(iv) RepgélrSZI[(GQz) the full subcategory of Reptor z,(Gq,) whose objects are isomorphic to 1'/1",
where T' and T" are Gq,-stable lattices in a crystalline Qg-representation with Hodge-Tate
weights in I. We refer to the objects in RepCrls I(GQZ) as torsion crystalline representations

(with weights in I ).
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(v) Repi™®! (Gq,), the category of free finite rank A-modules M with an A-linear Gq,-action, for
which there exists a crystalline representation of Gq, defined over E/ with Hodge-Tate weights
in I containing Gq,-stable O-lattices 7" C T', and an O-algebra map A — Endp(T/T") such
that M is isomorphic as an A[Gq,]-module to T/T". We will call objects of this category
Fontaine-Laffaille A-representations (with weights in I ).

Remark 4.12. Definition |4.11{v) matches Definition 2.1 in [Kall9] .

Definition 4.13 ([BK90] p. 363, [Bool9] Definition 4.74+4.9). Similar to [Bool9] we define the
following two functors.

[2—£,0]

(i) A covariant functor Tes : M Fé@ — Repéé(GQe) defined via

Tonis(M) = ker (1 — g1t I (Aeris @7, M) > Acris 92, M) .

(ii) A covariant functor V; : M Fé’e[a’b] — Repéz(GQZ), defined via
(4.3) VI(M) = Tcris(M(_b))(_b)'

Recall that M (—b) was defined in Definition while (—b) on the outside denotes the Tate
twist as defined in Section 2.1

Remark 4.14. We note that for 7 € {0, tor} the category MF?f’Z[CZ’b] is a full subcategory of

M F,,f vz[fz,aw—?]’ since they are both full subcategories of M Fr,f Z, (cf. Definition , so in particular
(4.3) makes sense.

Remark 4.15. Note that V; extends Teyis to general I (in particular Vig_g o = Teris). Also observe
that for M € MFI% we have M(~b) € MFFE 5% since M(—b)! = MY = 0 and M(—b)?>~* =

or,Zy tor,Zy
M?* 0 = M as b+ 2 — ¢ < a. In particular, the definition of V7 makes sense.
Compared to [Bool9] we work with the more restrictive interval [2 — ¢, 0] for Tt,is and correct a

sign error in the Galois twist in [Bool9] Definition 4.9.

Theorem 4.16 ([BK90] Theorem 4.3, [Niz93| Section 2, [DEGO04] Section 1.1.2, [Hat19] Section
2.2, [Bool9] Fact 4.10, [Kall9] Theorem 2.10). We have:

(i) The covariant functor Vigy) : MF%’Z[a’b] — Repée(GQZ) is well-defined, exact and fully faithful.
(i9) For M € MF%;[a’b] one has Vi, (M) = @me](M/ﬁ”).

n
(iii) The essential image of Viay is closed under formation of sub-objects, quotients and finite

direct sums. It is given by the subcategory Repczr;s’[_b’_a](GQl). For M € MFtJ;’iailj the lengths
of M and V(M) as Zg-modules agree; in particular the essential image of MFt{)’Klil?
N i ) 7b77
Ve s Repioyy "~ (Gaq,)-
(iv) For A € LCAp, the functor Vi, induces a functor from MFtJ;’r[aZ’I? ®z, A to the category of
free finite rank A-modules with an A-linear Gq,-action, which we will also denote by Vi, ).

Its essential image is given by Repg;’[gb’fa](GQé,). In fact, Vi,p) gives an equivalence of

categories between MFtJ;’EaiZ? ®z, A and Repg;z[gb’_a](GQl).

Remark 4.17.

(1) Note that for M € MF#;E?Z’IE we have Vigqsp16(M(5)) = Vi (M)(=s).
(2) For I = [a,b] = [0,¢ — 2] the functor V; agrees with that of the functor V in [DFG04] p.

670 by [Bre98] Proposition 3.2.1.7.

under
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(3) For M € MFt’glailj ®z, A the Hodge-Tate weights of V7(M) (in the sense of Definition
4.11)(3)) equal the negatives of the Fontaine-Laffaille weights of M, defined in Definition

4.1)(3), due to our convention that the Hodge-Tate weight of the cyclotomic character is +1.

Example 4.18. For n € [2 — ¢,0] and A € LCAp we have that Teis(Mp,a) = A(—n), where
(—n) denotes the Tate twist as defined in Section In particular, for any n € Z N [a,b] we
get Vigy(My) = Fo(—n) = Fo(—n+1—0), but M, € MFLS whereas M, (€ — 1) = M,y €

; [ ; b ] tor,Zy
+0—1,b+4—1
MEF ’
tor,Z, .

As an immediate consequence of the equivalence of categories in Theorem [4.16{iv) we obtain the
following corollary.

Corollary 4.19. For any M, N € MF/ ®z, A there is an isomorphism of A-modules

tor,Z,
(4.4) Ext (M,N) = Extgepcris,,l Vi(M), Vi(N)).
A

1
I
MFtJ;r,ZZ@ZeA (GQe)(

4.4. Local Selmer groups. Let I = [a, b] be an interval as in the previous section (so 0 < b—a <
¢ — 2) but we now also require that 0 € I (so that 1 € M Fé;f, see Definition .
For an extension between two objects M, N in Rep,(Gq,)

0—+M-—E—N-—=0
we define the n-th Tate twist of the extension to be the extension
0— M(n)— E(n) - N(n) — 0.
For a subgroup G of EthlaepA(GQe)(M ,N) we define G(n) to consist of extensions which are the

n-th Tate twists of the elements of G.

. . 1
iven an extension Ex
Given an extension &£ € tMFf,, 2,4

tor,Zy

0— M — My — M3 —0

we will write V7(€) for the extension in Ext! . _; (Vi(Ms), Vi(My)) represented by
Repfrcc:A (GQZ)

0— V](Ml) — V[(Mg) — V](M3) — 0.

This uses the exactness of the functor V; (cf. Theorem |4.16{(1)).
Since we defined Vi(M) = Teis(M(—b))(—b) (see Equation (4.3)) we conclude the following
lemma:

Lemma 4.20. For A € LCAp and M € MFt];;’ZZ ®z, A we have

1 _ 1 . _ . _ _
VI(EXtMFf,I ®ZZA(1A7M)) = EXtRep;r;:;I(GQZ)(TcrIS(M—b,A)( b), Teris(M (—b))(—b))

tor,Zy
(A(D), Teris(M(=b))) (D).
Replfr’;:[g’“‘Q](GQe)(A(b)’ Teris(M(=b))) and they
give rise to the same subgroup of H'(Qy, Vi(M)), see Definition |4.21)
" 1
Definition 4.21. For M € MFL!, ®z, Alet H} [(Qu, Vi(M)) = Vi(Ext! ®Z[A(u,M)) C
HY(Qq, Vi(M)).

tor,Zy
Remark 4.22. Lemma shows that all the extensions in H}I(Qg, Vi(M)) arise from objects

in Ext! f.2—c0)» in particular, extensions between representations of Hodge-Tate weights in the
tor,Z,

interval [0, ¢ — 2].

(Ms, My) represented by an exact sequence

1

>~ Ext! is,[0,6—2
Reppre 3" (Ga,)

Note that the latter is naturally isomorphic to Ext!
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Remark 4.23. (1) This is a more precise version of the definition made in [BK13] Section

5.2.1. In [BK13] we worked (implicitly) with I = [0, p—2], but the results in [BK13] Section
5 (in particular Corollary 5.4 and Proposition 5.8 restated below) carry over to H} ; defined
here for general 1.
T.B. and K.K. would like to clarify how certain definitions and results in some of our
papers fit in with this more precise description of the groups H} ;- In [BK19] the relevant
interval I is I = [1 — k,k — 1] for Section 5, and the bound on the prime p should be
strengthened to p — 1 > 2k — 2. The examples in Section 6 of [loc. cit] satisfy this stronger
condition. Similarly in [BK20] the relevant interval is I = [3 — 2k, 2k — 3| and p should
satisfy p — 1 > 4k — 6 (instead of p > 2k — 2). This stronger bound should be used for
Theorem 10.2, but does not affect the paramodular conjecture application for k = 2 since
we had excluded p = 3 already in Proposition 2.10. In [BK13] Section 6 the suitable
interval I is such that Homp(pe, p1) has Hodge-Tate weights in I. The Selmer groups
which we refer to are Hy(F, Homg(p;, pj)) for 4,5 € {1,2}, for which the local condition is
H}J(FU,HomF(ﬁi,ﬁj)) for v | p. In [loc.cit.] Section 9 the relevant interval is I = [—1, 1],
with corresponding bound p—1 > 2 (which is already assumed). In [loc.cit.] Section 10 the
relevant interval is I = [1 — k, k — 1], and the correct bound is p — 1 > 2k — 2. In [BK15]
Sections 7 and 8 the same comment applies as for [BK13] Section 9.

In J.B.’s paper [Bro07] the argument in sections 8 and 9 to show the splitting at ¢ of

—k—2
(6 . ek*1> by relating it to H}(Q@, F(—1)) = 0 requires an interval I containing —1 and
2k — 3, so would need p — 1 > 2k — 2. However, one could instead not twist and invoke
Proposition to deduce the splitting directly from Fontaine-Laffaille theory.
Similar comments apply to other results in the literature, e.g. in [DFGO04] Corollary 2.3
the expression H}(Qg, adL) is only indirectly defined by H}(Qg, ad,L) = H}(Qg, ad’L) @
H}(Qg, k). To define the Selmer group for the trace zero endomorphisms and prove this

identity requires adg to lie in the essential image of the Fontaine-Laffaille functor, and
therefore I = [1 — k,k — 1] should be specified, rather than I = [0,¢ — 2] as in [DFG04]
Section 1.1.2.

If M,N € Rep?rr;Z’;(GQé), then M & N € Repg;’;(GQe) and it is clear that

(4.5)

Hi(Qe, M@ N)=Hj}(QM)®Hj (Qg,N)

because the extension groups as well as the functor V; commute with direct sums.

Proposition 4.24. For anyn € [2 — {,{ — 2] such that 0,—n € I the group H}J(Qg, Vi(M_y)) is
independent of I. In fact we have

where

0 n <0
H&n(QZ;F) n=20
H&(Qf?,uﬁ) n=1
HY(Qe,F(n)) n>1,

H},I(Q£7F(n)) =

H.,(Qe,F) :=ker(H'(Qq,F) — H'(I;,F)) = Hom(Gq, /I, F)

and Hf_ll(Qg, ) denotes the peu ramifiée classes, namely those classes corresponding to Z, /(Z) ) c
Q) /(Q))" = HY(Qu,F(1)). Forn >0 we note that dimg H;(Qe, F(n)) = 1.
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Remark 4.25. (1) Proposition justifies writing H&(Qg, VI(M,)) as we did in [BKI9],
without specifying the interval I, as long as I contains —n. Under the conditions of Propo-
sition m (see comment after Proposition , once we have fixed a suitable interval I we
will also drop the subscript I in this paper.

(2) Note that the definition of H}J(Qe, Vi(M,,)) depends on n € Z, even though the coefficients
Vi(M,,) = F(n) only depend on n mod ¢ — 1.

(3) [Niz93|] Section 9.3 states a version of this result for the local crystalline cohomology of
unramified extensions of Q, and with Z,/¢™(n) coefficients for m € Z~.

Proof. We first note that H'(Qy, F(n)) is 1-dimensional for n # 0, 1, which follows from local Tate
duality and the Euler characteristic formula, see e.g. [Was97] Theorem 1 and Proposition 3.
For n = 0 we refer the reader to [CHTO0§| Corollary 2.4.4 for identifying H}J(Qe,F(n)) with
H! (Qe,F). That H! (Q, F) is 1-dimensional follows since #H'(Gq,/Is, F) = #H°(Qy, F).
Since 0 € I we know b > 0. If I = [a,b] and n < 0 (in particular —n ¢ [2 — ¢, 0]) then
H}”,I(Qé; VI(an,F)) = VI(EXt}\/[Ff,I F(MovF’ an,F)).

cor,z(g@Zz

By Proposition (ii) Ext! Mo w, M_, r) = 0 since the Fontaine-Laffaille weights satisfy

MFE{)’YI’ZZ®ZEF(
the inequality —n > 0.
On the other hand, if n > 0 then
H},I(Q& ‘/I(M—n)) = ‘/I(EXT’}WFJ[’I ®ZZF(MO’F7 an’]_:‘))

tor,Zy

is 1-dimensional by Proposition |4.8(i) since —n < 0. For n > 1 this equals H'(Qy, F(n)) by our
observation at the start of the proof.

For n = 1 we have H'(Q,F(1)) = Q//(Q))" is 2-dimensional, and one can identify the
Fontaine-Laffaille extensions with the peu ramifiée classes (see e.g. [Bre0l] Lemma 8.1.3). O

Remark 4.26. Note that [2— ¢, 0] contains both 0 and 2 — ¢ (and is the only interval of this length
that contains both). Then since F(—1) = F({ — 2) = Via_y g/(M2—¢) we get

H}7[2_z,o](Q£, F(-1)) = H},[Z—&O](Qév F({-2))= H},[Q_z,o}(QZv V[Q—Z,O](M2—£)) # 0,
=2
0 1

does not contradict the result in Proposition that H} ;(Qg, F(—1)) =0 for I as in Proposition
4. 24]
However for all other intervals I C [2 — ¢,¢ — 2] of length ¢ — 2 we have 1 € I and so then

Hi(QuF(-1)) = VI(EXtLFf,[a,b](MOa My)) = Tcris(EXtLFf,m—e,O] (M_p, Myp))(=b) =0

tor,Zy tor,Z,
as per Proposition
This demonstrates that H} 1(Q¢, F(n)) is only independent of I for I containing —n.

corresponding to the crystalline non-split extension ) Note that 1 ¢ [2 — ¢,0], so this

Following [BK90] we define for a Q/[Gq,]-module V/
H}(Qp, V) = ker (H'(Qe, V) = HY(Qr, V ©q, Besis)) ,

where B,is is Fontaine’s ring of ¢-adic periods, see [Fon&2).
Let V' be a finite-dimensional E-vector space and T' C V' a Gq,-stable O-lattice, i.e., T is a
free O-submodule of V' that spans V as a vector space over E. We set W = V/T and W[\"| =

{w e W : X™w = 0} = T/\™T for any m € Zo. Note that W[X™] lies in Repgy 3. (Gq,) if Vi
crystalline with Hodge-Tate weights in —1. We let H}(Qg, W) be the image of H}(Qg, V') under
the natural map H'(Q, V) — H'(Qy, W).
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Proposition 4.27 ([DEG04] Proposition 2.2). Assume V is a crystalline E[Gq,]-module as above
with Hodge-Tate weights in —1 = [—b,—a] (and 0 € I). For T C V and W = V/T as above we

then have H}(Q@, W) = ligH}J(Qg, WIA™]).

Proof. We note that the proof of [DFGO04] Proposition 2.2 carries over from [0,¢ — 2] to general
I (in particular one has Proposition and apply the argument with (in their notation) V; the
trivial Gq,-representation and Vo = V. ]

Corollary 4.28 ([DFG04] (33), [BK13] Corollary 5.4). For every m € Zso we have an exact
sequence of O-modules
0 — HY Qe W)/X™ = HJ (Qe, WIA™]) = H}(Qe, W)[A™] — 0.
Corollary 4.29. Forn € Z with0,n € I C [2—{,{ —2] and n # 0 we have
Hj((Qe, Vi(M_p¥)) = Hi(Qu, E/O(n))[A].

Proof. Note that H°(Qy, E/O(n)[\]) = 0sincen # 0 mod £—1. This implies H°(Qy, E/O(n)) = 0,
hence we are done by Corollary O

5. SELMER GROUPS

5.1. Definitions. For M a topological Z,[Gq]-module we set

H&n(Qpa M) := ker (Hl(Qm M) — Hl(Ipv M))
for every prime p.
Let E/Qy be a finite extension with valuation ring O, uniformizer A, and residue field F = O/A.
Let V be a finite dimensional E-vector space on which one has a continuous E-linear Gq action.
For finite primes p with p # £, we set

H}(Qpa V)= Hllin(Qpa V).
For p = ¢, we recall from Section 4] that

H}(Qp,V) = ker (H'(Qe, V) = H'(Qr, V ®q, Baris)) -

Let T' C V be a Gq-stable O-lattice, i.e., T'is a free O-submodule of V' that spans V' as a vector
space over E. We set W = V/T and WA\"] = {w € W : \"w = 0} = T/\"T. For every p we let
H}(Qp, W) be the image of H}(Qp7 V) under the natural map H*(Q,, V) — H'(Qp, W). We have
H}(Qp, W) = HL (Qp, W) for all p # ¢, as long as V is unramified at p, which for us will always
be the case.

We define the global Selmer group of W as

HY(Q
1 1 P>
H}(Q, )—ker{H QW @ QW )}.

We note that as H}(Q[, W) commutes with direct sums and so clearly does H} (Qg, W), we get
that H}(Q, W) does as well.

Let I = [a,b] with a,b € Z and b — a < ¢ — 2 and assume that 0 € I. If V is crystalline with
Hodge-Tate weights in —I we define

7'(Q "]) H'(Qe, W[A"])
H} (Q,W[\"]) =ker{ HY(Q,W[\"]) — p W ® ’
£ QWX D ar v © i@ Wi
Asnoted in (4.5) H}(Qg, W[A"]) also commutes with direct sums and so we get that H},I(Q, WIA™])

does as well.
We record a slight strengthening of [BK13] Proposition 5.8:
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Proposition 5.1. Assume that the interval I = [a,b] contains 0 and V is a E[Gq-module which is
finite-dimensional as an E-vector space and crystalline as a Gq,-module with Hodge-Tate weights
in —I. If H(Q,WI\]) =0 then we have

Hi(Q,W)\"] = Hj ((Q,W[\"]).

Proof. [BK13|] Proposition 5.8 proves the claim under the assumption H°(Q, W) = 0.

Suppose we have a € H°(Q, W). We know every element of W is annihilated by some power of
A, so if a # 0 there is an integer m so that A« = 0 but A"« # 0 for all 0 < n < m. However, this
gives A la € HO(Q,W[)\]) = 0, so it must be that o = 0. Thus, H%(Q, W) = 0 as desired.

O

After a suitable interval I has been fixed we will therefore also drop the subscript I and write
HH(Q W),

Let G be a group, R a commutative ring with identity, and M; finitely generated free R-modules
with R-linear action given by p; : G — GLg(M;) for ¢ = 1,2. The action of G on Hompg/(p2, p1) is
given by

(g-©)(v) = pr(v)p(p2(g~")v).
In particular, if p; = p2 = p, we define the adjoint representation of p to be the R[G]-module
ad p = Hompg(p, p). We write ad’ p for the R[G]-submodule of ad p consisting of endomorphisms of
trace zero.

If p is of rank n and 2n € R* then we have an isomorphism of R[G]-modules

(5.1) adp=ad’pa® R.

5.2. Non-vanishing of a Selmer group. In this section we explain how the congruence of
a Siegel cuspform to the Klingen Eisenstein series in Section [3| leads to a non-zero element of
HY(Q,ad(py0) (2 — k) @ E/O).

From now on, we fix the weight £k > 4 even and the prime ¢ satisfying ¢ > 4k — 5 and impose
Assumptionon the field E/Qq. Let ¢ € Si(I'1) be a normalized eigenform. Let pg be the A-adic
Galois representation associated to ¢ and assume p,, is irreducible. Let f € Si(I'2) be an eigenform

with irreducible Galois representation py so that f is eigenvalue congruent to EZ’l modulo A.

The following result shows we can choose a lattice so that the residual Galois representation
gives rise to a non-split extension.

Lemma 5.2. There ewists a Gq-stable lattice in the space of py such that with respect to this lattice

*

Py = [0(25 p¢(k—2)} %ﬁgb@ﬁqﬁ(k_z)-

Proof. Using the compactness of Gq one can show that there exists a Gq-stable lattice A" in the
space of py. In other words, there exists a GL4(E)-conjugate py s of py which has image in GL4(O).
As

tr py(Froby,) = tr py(Froby,) + tr pg(k — 2)(Frob,) (mod A)

for all primes p # ¢ one uses Brauer-Nesbitt Theorem together with the Chebotarev Density
Theorem to conclude that p%), = py @ py(k —2). Now the existence of the desired lattice which
gives the non-split extension follows from Theorem 4.1 in [BK20]. O

From now on, whenever we write py, we assume we have made a choice of lattice as in Lemma
so we consider py as a map from Gq to GL4(O).

We now choose the interval I = [3 — 2k, 2k — 3] so that it contains all the Hodge-Tate weights of
Pty Por Pe(k—2), ad py(2 — k), and ad py(k —2). Note that —1 = I. We assume that £ —2 > 4k —6.
When we write H} from now on this refers to H} ; as defined in Section
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Let p be any of the representations above and write V for the representation space of p. We
choose a G'q-stable lattice 7' C V' and recall that the isomorphism class of the semi-simplification
of the F[Gql-representation T'/AT is independent of the choice of T'. It is well-known that if T'/AT
is irreducible then the O-length of H}(Q, W) is independent of T', where as before W = V/T. By
Proposition we then conclude that also the O-length of H}(Q, W[A"™]) is independent of the

choice of T as long as H(Q, W) = 0.

Lemma 5.3. Under our assumptions (in particular, p, irreducible and ¢ > 4k —5) the mod A
reduction of ad’ pe 18 irreducible.

Proof. Assume the three-dimensional representation ad’ Py is reducible. Then it either has a one-
dimensional G q-stable subspace or quotient. Since ad pg and 1 are self-dual, so is ad’ py- Hence we
can assume without loss of generality that ad’ Py has a Gq-stable line. Write ¢ for the character
by which Gq acts on the line.

As py is unramified away from £, the splitting field of 1) must be a subfield of Q((¢~). As the
order of 1 is prime to ¢, this splitting field must be a subfield of Q(uy), so ¥ = €* for some integer
ac€l.

This would require H°(Q, ad® pp(—a)) # 0. Note that

HO(Q,ad ,(~a)) = Homag (75(a). 7).

If a =0 (mod (¢— 1)), then this space is one-dimensional by Schur’s Lemma since p,, is irreducible.
So, H(Q, ad’ py) = 0, contradiction.
If a # 0 (mod (¢ — 1)), then

H°(Q,ad py(—a)) = H(Q,ad’ py(—a)) # 0.

This means that py is isomorphic to ﬁ¢(a). Considering the determinant, € must be the trivial

character or the quadratic character €¢~1)/2. Both are ruled out since a € I = [3 — 2k, 2k — 3] by
our assumption that ¢ > 4k — 5. O

Remark 5.4. From Lemma we conclude that when p € {pg, py(k—2),ad” ps(2—k),ad® ps(k —
2)}, the O-length of H}(Q, W) and H}(Q, W[A"]) are independent of the choice of T. As we will
ever only be interested in the order of these groups, the choice of T' is immaterial and we will simply
assume that such a choice was made. So, for example we will use the notation H}(Q, ad’ por(k —
2) ® E/0O), thus assuming that when we write ad” p, \(k —2), we have made a choice of a lattice for
this representation. Likewise any one-dimensional representation p is irreducible, so the O-length
of H}(Q, p® E/O) is independent of the choice of T

For the representation ad p(m), m € {k—2,2 —k} (which is reducible) we choose a lattice which
is a direct sum of a lattice inside ad” p(m) and a lattice inside F(m). So, from now on whenever we
write ad p(m) we mean such a lattice. Since the formation of Selmer groups commutes with direct
sums we then get
(5.2)
H{(Q,ad py(m) ® E/O) = H}(Q,ad’ pg(m) ® E/O) & H{(Q,E/O(m)) for m € {k—2,2 - k}.

Note that the O-length (and in particular, the non-triviality) of H}(Q, ad p(m)® E/QO) is indepen-

dent of the choice of a lattice inside ad ps(m) as long as it is the direct sum of lattices in ad” py(m)
and E(m).

Theorem 5.5. With the set-up as above we have H}(Q, adpy(2 —k)®@ E/O) #0.
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Proof. We have via Lemma that there is a lattice Ty C Vy so that the residual representation
pr: Gq — GL4(F) has the form

(53) Pr= [%¢ Pas(kw— 2)]

and is not semisimple. The fact that 1 as in gives a non-trivial class [¢] in H'(Q, Homp(py, 1)) =
HY(Q,ad py(2—k)®E/O[}]) is clear. We need to show that [t] lies in H}(Q, ad py(2—k)®E/O[N])
and that the latter group injects into H}(Q, adpy(2 — k)@ E/O).
We first show that [¢] satisfies the conditions to be in H}(Q, ad pg(2 — k) ® E/O[)]). We have
that py is unramified at all primes p # /, so the local conditions are satisfied for all primes p # £.
Since f has level one and weight k, pf|p, is crystalline with Hodge-Tate weights in [0, 2k — 3] C

cris, I

I = —I. Hence p; (considered as a Gq,-module) belongs to Repy,.. p(Gq,) and gives rise to an
element of

Ext] i (Pg(k —2),p4) C ExtlF[G 1(ps(k —2) @ E/O[N], py @ E/O[A]).
(GQg) Qy

Repfree,F
By our choice of I we can use (4.4)) and Proposition to get a non-zero element in

Ext! s (F,ad py(2 — k) ® E/O[N]) C Ext};[GQZ](F, ad py(2 — k) ® E/O[N]).

Reppeo v (GQy)
As this extension maps to [¢|Gq,| in H 1(Qu,ad py(2 — k) ® E/O[N]) under the canonical iso-

morphism Ext]l;[GQA(F,adpqg(Q — k) ® E/O[N]) & HYQu,adpy(2 — k) @ E/O[)N]), we conclude
that

[Wleq,) € Hi(Qe ad py(2 — k) @ E/O[N]) € H'(Qq,ad ps(2 — k) @ E/O[N).
Therefore we have established that

[V] € H}(Q,ad ps(2 — k) ® E/O[N]).

By Proposition this group is isomorphic to H}(Q, ad py(2 — k) @ E/O)[A] if HY(Q,ad ps(2 —
k) @ E/O[A]) = 0. The latter holds since
(5.4) ad py(2 — k) ® E/O[N“@ = Homg,, (54(k — 2),54) = 0

as p, and p,(k — 2) are absolutely irreducible (by assumption) and non-isomorphic since k — 2 #

0, E_Tl (mod ¢ — 1) as £ > 4k — 5 and k # 2 (cf. the proof of Lemma .
(|

Lemma 5.6. Let n be an even integer satisfying 3 —2k < n < 0. Assuming {1 # Clg(<£)+, one has
H}(Q, F(n)) =0 and, if additionally n # 0, H}(Q, E/O(n)) =0.

Proof. We see from Proposition |4.24] that any cohomology class in H}(Q, F(n)) must vanish when

restricted to I,. As all classes in H;(Q,F(n)) are unramified away from ¢, we therefore get that

they are unramified everywhere. Using inflation-restriction sequence where H = Gal(Q(¢,)"/Q)
we see that

HY(Q,F(n)) = H'(Q(¢) ", F(n))" = Homp (Go,)+ F(n)).
Note that everywhere unramified classes map to homomorphisms that kill all the inertia groups.
Hence the image of H}(Q, F(n)) lands inside Hom (Clg(g)% F) =0.

Note that a torsion O-module M is zero if and only if M[A] = 0. Therefore the vanishing of
H}(Q, E/O(n)) follows from Proposition 5.1} which tells us that H}(Q, E/O(n))[\] = H}(Q,F(n))
if H°(Q, E/O(n)) = 0. We know that H°(Q,, E/O(n)[\]) = H°(Q,F(n)) = 0 for n # 0 since n # 0
(mod ¢ — 1) under our assumption ¢ > 4k — 5. O
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Corollary 5.7. Let ¢ € Si(I'1) be as in Theorem and assume the hypotheses of Theorem
are satisfied. Assuming €1 # Clé(_CZ)Jr one has H}(Q, ad® ps(2 — k) @ E/0O) # 0.

Proof. This follows from Theorem Lemma and isomorphism ([5.2)). O
Remark 5.8. If we assume Vandiver’s conjecture for the prime ¢, this gives that ¢ { # Clg(_CZ)Jr.

Thus, we obtain the following corollary.

Corollary 5.9. Let ¢ € Sk(T'1) be as in Theorem and assume the hypotheses of Theorem
are satisfied. Furthermore, assume Vandiver’s conjecture is true for the prime £. Then we have

0| #HHQ,ad" 5,(2 — k).
6. MODULARITY

We begin with the following commutative algebra result that will be useful in this section.

Lemma 6.1. If J is an ideal of F[[Xy,..., Xy]] that is strictly contained in the mazimal ideal,
then F[[X1,...,X,]]/J admits an F-algebra surjection to F[T]/T?.

Proof. For a positive integer k let I be the ideal of F[[ X1, ..., Xx]] generated by all the monomials
of degree at least 2. Set Sy := F[[X1,...,Xk]]/Ix and write ¢ : F[[X1,...,Xk]] — Sk for the
canonical F-algebra surjection. If ¢,,(J) = 0, then composing ¢,, with the map S, — F|[[T]]/T?
sending X7 to T" and X; for ¢ > 1 to zero gives the desired surjection.

Now suppose ¢, (J) # 0. Without loss of generality (renumbering the variables if necessary) we
may assume then that J contains an element of the form v := X, +f(X1,..., Xp—1)+9(X1,..., Xn),
where f is homogeneous of degree one and all the terms in g have degree at least 2. Note that we
can assume without loss of generality that some power of X, appears in g. (Indeed, if g contains no
X, then we replace u by u+u? € J.) By Theorem 7.16(a) in [Eis95] there is a unique F-algebra map
from F[[X1,...,X,]] to itself sending X,, to —f — g and X; to itself for i < n. In other words, for
any power series h(Xy,...,X,,), the element h(X1,...,X,—1,—f — g) also lives in F[[X1,..., X,]]
and we denote it by h'(X7,...,X,,). Clearly h — 1/ € J.

Thus for any power series h where the smallest total degree of any term containing X,, is s we
have

h=h"(mod J)

for some power series h’ with the smallest total degree of any term containing X,, equal to s’ > s.
By the same process we get an h” such that A’ = A” mod J and the smallest total degree of any
term X, in h” is strictly greater than s’. This way we can construct a sequence of power series hg
where for every s we have the smallest total degree of any term containing X,, being greater than or
equal to s and such that h — hs € J for every s. We note that hg is a Cauchy sequence with respect
to the (X1,..., X, )-adic topology (indeed, for ¢,u > s we see that hy — hy, lies in (X1,...,Xy)%).
Set hg = limg_,o hs. As J is a closed ideal, we get that hg — h € J. For every s we have

ho = hs =ws mod X,

for some wy € F[[X1,...,X,_1]]. Note that the wy also form a Cauchy sequence since hs does. Set
w = lims 00 ws € F[[X1,..., Xp—1]]. Thus hp = w modulo (,(X;) C N(X1,...,X»)* =0, so
hg € F[[Xl, e ;Xn—l]]-

Hence the natural F-algebra map ¢, : F[[X1,..., X,1]] = F[[X1,...,X,]]/J given by hg —
ho+J is surjective. Thus we get an F-algebra isomorphism F[[X1,..., X,]]/J — F[[X1,..., Xs-1]]/Jn-1,
where J,_1 = kery,_1.

If ¢r,—1(Jp—1) # 0, continue this way obtaining a sequence of ideals J,,_2, J,—3, .... If at any stage
(1<r<n-2)weget ¢p_r(Jp_r) =0, then we are done. Otherwise we can eliminate all but one
variable and get F[[Xy,..., X,]]/J = F[[X1]]/J1 and now we must have ¢1(J;) = 0 as otherwise
J1 and hence J is maximal. O
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Recall that in the earlier sections we fixed the weight k > 4 even and prime ¢ > 4k—>5 and imposed
Assumption 3.1 on the field £/Q,. We also fixed the Fontaine-Laffaille interval I = [3 — 2k, 2k — 3].
Let ¢ € S(I'1) be a newform such that p,, is irreducible.

The goal of this section is to prove a modularity theorem under the following assumption:

Assumption 6.2. For k, and ¢ as above we assume that

(i) there exists f € Si(I'2) such that f =ey Ei’l (mod A), and
(ii) #H}(Q,ad0p¢(2 —k)®0 E/O) = #0O/) (recall that the left hand side is independent of
the choice of lattice, see Remark , and
(iii) H}(Q,ad’p4) = 0.
We impose Assumption [6.2) and fix f as in Assumption [6.2] in what follows.

Remark 6.3. Assumption (i) is satisfied under the assumptions of Theorem and so is one
inequality in Assumption (ii) under the assumptions of Corollary

As before we denote the f-adic Galois representation attached to f by ps: Gq — GL4(E) (see
Theorem [2.1). In particular, such py is unramified away from /. Lemma gives that py is
irreducible.

We will write Gy for the Galois group of the maximal Galois extension of Q unramified away
from £. Clearly the representation py factors through Gyg.

We will use Mazur’s deformation theory which is well-known, and we refer the reader to standard
references such as [CSS97, [Ram93] for the definitions and basic properties.

Definition 6.4. For B € LCNp we say that a representation p : Gq, — GL,(B) is Fontaine-
Laffaille (with Hodge-Tate weights in —1) if p®p A lies in Repg;’;](GQL,) (see Definition 4.11(v))
for every Artinian quotient A of B. By Theorem (iv) this is equivalent to requiring p ®p A to
lie in the essential image of the Fontaine-Laffaille functor.

Remark 6.5. We know that any choice of O-lattice p;, in pg or py is Fontaine-Laffaille in this
sense, since their restrictions to Gq, lie in Repczrf’_](GQe) and therefore in the essential image of
the Fontaine-Laffaille functor by Theorem M(iii). Since they are also free O-modules this implies

by Theorem (iii) and (iv) that pr ® B lies in Rep?rr;z;[(GQz) for every Artinian quotient B of
0.

For any local complete Noetherian O-algebra A with residue field F by a deformation of a
residual Galois representation 7 : Gy — GL,(F) we will mean a strict equivalence class of lifts
7: Gy — GLy(A) of 7 that are Fontaine-Laffaille at £. This deformation condition is introduced
in [BK13] Section 5.3 and [CHTO§] p.35.

As is customary, we will denote a strict equivalence class of deformations by any of its members.
If 7 has scalar centralizer then this deformation problem is representable by a local complete
Noetherian O-algebra which we will denote by R, [Ram02]. In particular, the identity map in
Homp_a15(R7, R;) furnishes what is called the universal deformation quniv . Gy — GL,(R;).

Lemma 6.6. One has Rp, = Ry (—2) = O. Furthermore, py (resp. pe(k — 2)) is the unique
deformation of py (resp. py(k —2)) to GL2(O).

Proof. We have

(6.1) # Homo aig (R, F[X]/X?) = #H[(Q,adpy) =0,

where the first equality follows from the fact that our deformation condition is the property of
being Fontaine-Laffaille (see e.g., Section 2.4.1 [CHTO0§|), and the second one holds since we have
H}(Q, adpy) = H}(Q7 ad’ ﬁ¢)®H}(Q, F) =0and H}(Q7 F) =0by Lemmaas we have imposed
Assumption [6.2[(iii).
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By Theorem 7.16 in [Eis95] we know that any local complete Noetherian O-algebra with residue
field F is a quotient of O[[X1, ..., X,]] for some positive integer n. Hence S := Rj, /(AR;,) =
F[[Xi,...,X,]]/J for some ideal J. Suppose first that J is not maximal. Then by Lemma (6.1 we
know that S admits a surjection ¢ to F[T]/T?. This contradicts (6.1), hence S = F. We now
use the complete version of Nakayama’s Lemma to conclude that the structure map O — Rj o 18
surjective (cf. [Eis95], Exercise 7.2 or [Mat89] Theorem 8.4). Let us briefly explain why this version
applies here. As R; » ®0 F # 0, we see that A\ € m, where m is the maximal ideal of R5 o Hence

(6.2) (\"Rp, € (m".

n n
The latter intersection is zero, since Rj; 5 18 complete, so separated with respect to m. Hence
implies that Rp, is separated with respect to AR5 5 allowing for the application of the complete
version of Nakayama’s Lemma.

As py is a deformation to O, we conclude that Rp, = O. This implies that if p : Gy — GL2(0)
is any deformation of py, one has p = pg. Similarly, if p : Gy — GL2(O) is a deformation of
Py(k —2) then p(2 — k) is a deformation of p,. Note that our choice of I = [3 — 2k, 2k — 3] means
that this twisting stays inside our category of Fontaine-Laffaille representations. Hence we get that
p(2 — k) = py, and so we are done. O

Remark 6.7. Note that the determinant of our deformations is automatically fixed as H}(Q, adpy) =
H }(Q, ad’ py) under our assumptions. This means that all deformations p of p, (respectively

Pk —2)) satisfy det p = =1 (respectively det p = €2F73).

Remark 6.8. Regarding Assumption (iii) we note that if one additionally assumes that p, is
absolutely irreducible when restricted to Gal(Q/Q(+/(—1)¢=1/2¢) then [DFG04] Theorem 3.7 (see
also [Hid00] Theorem 5.20) relates H}(Q, ad’p,® E/O) (via an Rj, = T theorem) to a congruence
ideal 173). One can use Proposition this implies that H}(Q, ad D) = H}(Q, ad0p¢®E/O)[)\] =0

if ng is coprime to /.

Lemma 6.9. Let G be a group and F be a field. Fori e {1,2}, let n; € Z4 and p; : G — GL,, (F)
be an irreducible representation with p1 % pa. Let p : G — GLy, 40, (F) be a representation such
that

a
P:[pl ]%Pl@ﬂz-
P2

Then p has scalar centralizer.

Proof. Note that @ : g — pa(g)~'a(g) defines a cocycle from G to Hom(pa, p1). The fact that p

is non-semi-simple implies that @ is not a coboundary. For i,j € {1,2} let A;; € Mat,, n,(F) be

such that {iu 211,2] centralizes p. Using the fact that p1, po are irreducible and non-isomorphic
2,1 A22

one gets that Az 1 = 0. Then Schur’s Lemma gives us that A; 1 = al,, and Az = 01, for scalars

«, 9. Finally one gets

(6.3) aa + Al,gpg = plALQ + ad.

If a # 0, then one gets
1

= — (pArapy  — A
a a_(S(Pl 1,205 1,2)s

contradicting the fact that it is not a coboundary. Thus o = ¢ and (/6.3) now gives that Ay, =0. O

Fix a lattice in the space of p; as in Lemma i.e. such that p; = [p¢ 5 (k* 2)] Gy —
ok —

GL4(F) is non-semisimple. For simplicity, we will write R for the universal deformation ring R ; of
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Py and A Gy — GL4(R) for the universal deformation. Note that the deformation problem
is representable because p; is non-semisimple with irreducible, mutually non-isomorphic Jordan-
Holder factors, hence by Lemma the centralizer of p; consists of only scalar matrices. We say
that a deformation p is upper-triangular if p is strictly equivalent to a deformation of p; of the form

b

Lemma 6.10. There do not exist any non-trivial deformations of p; into GL4(F[X]/X?) that are
upper-triangular.

with the stars representing 2 x 2 blocks.

Proof. We use Proposition 7.2 in [BK13] noting that Assumption 6.1(i) in [loc.cit.] is satisfied
because we impose the current Assumption [6.2{ii). On the other hand, Assumption 6.1(ii) in
[loc.cit.] is satisfied because of Lemma O

Definition 6.11. The smallest ideal I of R such that tr p"™" is the sum of two pseudocharacters
mod [ will be called the reducibility ideal of R. We will denote this ideal by .

Proposition 6.12. Let I C R be an ideal such that R/I is an Artin ring. Then I D I, if and
only if p"™ (mod I) is upper-triangular.

Proof. This is proved as Corollary 7.8 in [BK13]. O

Corollary 6.13. The structure map O — R/l is surjective and descends to an isomorphism
O/X — R/ for some s € Z>oU{oo}. In fact, one has

R/Le = O/

Proof. By Theorem 7.16 in [Eis95] we know that any local complete Noetherian O-algebra with
residue field F is a quotient of O[[ X7, ..., X,]] for some positive integer n. Hence S := R/(I; +
AR) = F[[X1,...,X,]]/J for some ideal J. Suppose first that J is not maximal. Then by Lemma
we know that S admits a surjection ¢ to F[T]/T2. This means that there exists a non-trivial
(because the image of ¢ is not contained in F) deformation of p to F[T']/T? which is upper-triangular
(by Proposition , which contradicts Lemma Thus, indeed, S = F.

Hence, R/I. is generated by one element over O by the complete version of Nakayama’s Lemma
(one can argue as in the proof of Lemma to justify that this version applies). This proves that
the structure map O — R/I . is surjective and so R/I;e = O/\° for some s € Z>o U {o0}.

The composition of p™" with the map R — R/I gives rise to a deformation pe : Gy —
GL4(R/I+e) = GL4(O/X*). By Proposition this deformation is upper triangular, i.e., one has

o |*1 *2
Pre = %3]
As the property of being Fontaine-Laffaille is preserved by subobjects and quotients, we see that
x1 and *3 are Fontaine-Laffaille representations with values in GLy(R/I;e) = GL2(O/A%). Thus by
Lemma [6.6] we can conclude that

*1 = pp, *3=pg(k—2) (mod \%).

Thus by (5.4) and Proposition *9 gives rise to a class in H}(Q, ad®py(2 — k) @0 E/O) as pre
is Fontaine-Laffaille. As p is non-semi-simple, we conclude that %5 is not annihilated by A\*7!, i.e.,
the class of %9 gives rise to a subgroup of H}(Q, ad’py(2 — k) ®0 E/O) isomorphic to O/\*. Thus
s<1as #H}(Q, ad’py(2 — k) @0 E/O) < #0/X by Assumption (ii). Finally, s > 0 as py itself
is reducible. This concludes the proof. ]

The following Proposition does not use Assumption [6.2f(ii).
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Proposition 6.14. Assume that dim H}(Q,adﬁ¢(k —2)) < 1. Then the ideal I e is a principal
ideal.

Proof. Since p"™V is a trace representation in the sense of Section 1.3.3 of [BC09] Lemma 1.3.7 in
[loc.cit.] tells us that we can conjugate p"™" by a matrix P € GLa(R) (here we use that every finite
type projective R-module is free since R is local) to get p*™™" adapted to a data of GMA idempotents

for R[Gn]/ ker p™¥. By [BC09] Lemma 1.3.8 we then get an isomorphism of R-modules

i MatQ(R) Matg(B)
univ ~v
RG]/ ker o™ = I\ ato(C)  Mata(R)
for ideals B,C C R. By [BCQ9] Proposition 1.5.1 we further know that I, = BC.
[BCO9] Theorem 1.5.5 proves that there are injections

Homp(B,F) = H'(Gy,ad py(2 — k))
and

Homp(C,F) < H' (G4, ad py(k — 2)).
Arguing as in [Ake23] Proposition 4.2 (see also [WWE19] Theorem 4.3.5 and Remark 4.3.6) one sees
that the images are contained in the Selmer groups H}(Q, adpy(2 — k)) and H}(Q, adpy(k —2)),
respectively. From Assumption (ii) and Proposition we see that H'(Q,ad pp(2 —Fk)) = F.
Together with the assumption dim H}(Q, ad py(k —2)) <1 we deduce by Nakayama’s Lemma that
both B and C, and therefore also I, are principal ideals of R. Note that Nakayama’s Lemma
applies since B and C' are ideals in R, which is Noetherian, hence they are finitely generated over
R. O

Remark 6.15. Note that there is a natural anti-involution on R[Gs] given by g — kF=3(g)g7 1,

however it swaps py with py(k—2), so the results of section 2 of [BK13] guaranteeing the principality
of the reducibility ideal do not apply in this case.

[Ake23] Proposition 3.10 proves the principality of the reducibility ideal of the reduced Fontaine-
Laffaille deformation ring R™Y for any residual representations with two Jordan-Holder factors.
Our argument (whilst relying on [Ake23| Proposition 4.2) is slightly more general as it allows us to
treat the case of non-reduced deformation rings.

Remark 6.16. By (5.2) we have

H}(Q,adpy(k —2)) = H{(Q,ad’ py(k —2)) & H{(Q,F(k —2)).
However, as opposed to the case of the (2—k)-twist of the trivial representation (cf. proof of Lemma
, there is no simple relation between H}(Q, F(k — 2)) and part of a class group except for the

case k = 2 by Proposition By the same Proposition for 2 < k < £ the group H}(Q, F(k—2))
requires no ramification condition at £, so equals H'(Gyp, F(k — 2)).

We have the following results about Hl(G{g}, F(n)) for n > 0:

Proposition 6.17 ([BK19] Proposition 6.5). Suppose n € Z~y and n # 1 mod ¢ — 1. Assume
that €1 # Clgc,)- Then dim H' (Gygy,F(n)) < 1.

Proposition 6.18. Let n > 0 be an even integer. Assume {1 By, (the n-th Bernoulli number) and
n#0 mod ¢ —1. Then H (G, F(n)) = 0.

Proof. Since n is even and H°(Gyp,F(n)) = 0 asn # 0 mod ¢—1 we know dimp H'(Gyp,F(n)) =

dimg H?(G {4, F(n)) by [NSWO§] Corollary 8.7.5 (Euler Poincare characteristic). [Ass95] Proposi-

tion 1.3 (condition (ii, 8)) proves that H*(Gyp,F(n)) =0if n# 1 mod ¢ — 1 (which is automat-
=l—n

ically satisfied for even n) and £ { # Clg ). By Herbrand’s Theorem (see e.g. [Was82] Theorem
6.17) the latter follows from our assumption that ¢t B,, (here we use again n 20 mod ¢ —1). O
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E'fl

Remark 6.19. Note that the assumption £ { By, is stronger than £ { # Clg ) in [BK19] Proposition

6.5. As noted in the proof of Proposition |6.18/ £ B,, implies ¢ { # Clézcne ) by Herbrand’s Theorem.
By the “reflection theorem” [Was82] Theorem 10.9 this means that also ¢ { Clg(g)-

This allows us to prove the following modularity theorem.

Theorem 6.20. Recall that we impose Assumptions and [6.3.  Furthermore, assume that
dimH}(Q,adm)(k —2)) < 1. Then the structure map ¢ : O — R is an isomorphism. In par-

ticular, if T+ Gq — GL4(E) is any continuous irreducible homomorphism unramified outside ¢,
crystalline at £ with Hodge-Tate weights in [3 — 2k, 2k — 3] and such that

T =Dy @ pg(k —2),
then T =2 p"hiv = pf, €., in particular T is modular.

Proof. 1t follows from Corollary that I, is a maximal ideal of R. As the deformation py
induces a surjective map j : R — O, we get the following commutative diagram of O-algebra maps

id
(6.4) 0~ R0

Lol

O/X— R/I,e —— O/
\_/

id

As 7 is an isomorphism, we get that so is j. So, using the fact that I, is principal (Proposition,
we can now apply Theorem 6.9 in [BK11] to the right square to conclude that j is an isomorphism.

Now, let 7 be as in the statement of the Theorem. Then 7 factors through a representation of
Gy Using that 7 is irreducible, Theorem 4.1 in [BK20Q] allows us to find a lattice in the space of
7 such that with respect to that lattice one has

=" o)

that is non-semi-simple. Using Remark we see that this lattice is Fontaine-Laffaille, so the star
gives rise to a non-zero element in H}(Q, ad®py(2 — k) ®0 E/O). As the latter group has order
#O/\ by Assumption (ii), we conclude that 7 = p. In particular, 7 is a deformation of p. Hence
T gives rise to an O-algebra map R — O, which must equal j by the first part of the theorem. [J

Remark 6.21. We note that unlike in many minimal deformation problems, the definition of R
does not require that the deformations have a fixed determinant, but rather this is a consequence
of Theorem [6.201

Remark 6.22. We return to Example and note that Assumption (i) holds, as discussed
earlier. Since ¢ = 163 or 187273 do not divide (2k — 1)(2k — 3)k! for k = 26 and p,, is irreducible,
[DFG04] Lemma 2.5 proves that p, stays irreducible when restricted to Gal(Q/Q(~/(—1)¢~1)/2¢).
Via Remark we can therefore check that H}(Q,ado py) = 0 as ¢ is the only cuspform of
weight 26 and level 1, so in particular, ¢ is not congruent mod £ to other forms. Since in addition
Laig(50, Sym?@) has ¢-valuation 1 for both ¢ = 163 and 187273 the Bloch-Kato conjecture for
#H}(Q,ad0p¢(2 —k)® E/O) = #0O/X (see [Dum09] Conjecture (5.2) and (5)) would imply that
Assumption (ii) holds.

We do not know how to check dim H}(Q,adﬁ¢(k —2)) < 1, as the corresponding divisible
Selmer group is not critical (in the sense of Deligne). Note that dim H}(Q,adﬁd,(k‘ —-2)) =
dim H}(Q, ad0ﬁ¢(k — 2)) by Proposition since neither prime ¢ divides Boy.
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7. (NON-)PRINCIPALITY OF EISENSTEIN IDEALS

In this section we will formulate conditions under which the Eisenstein ideal of the local Hecke

algebra acting on Si(I'2) is non-principal and
dimp H}(Q,ad’ py(k — 2)) > 1.
In particular, in that case R 2 O.

Recall in section [2| we defined T to be the Z-subalgebra of Endc(Sk(I'2)) generated by the
Hecke operators T2 (p) and T1(2) (p?) for all primes p. Let T denote the O-subalgebra of T/ ®z O
generated by the operators T)(p) and T, 1(2) (p?) for all primes p { £. Since strong multiplicity one
holds in the level one case, we can choose an orthogonal basis N’ of Sy (I'y) consisting of eigenforms
for all the operators in T.

Each g € N gives rise to an element 14 of the finite set Homp_a14(T, O) where ¢y(T) = \y(T),
with A\y(T) the eigenvalue of the operator T' corresponding to g. Thus we get a map ¥ : N/ —

Homo_1¢(T, O) given by g — Ay, which by strong multiplicity one (which holds for level I'y) is an
injection.
Lemma 7.1. The natural O-algebra map
(7.1) T— [[ O givenby T (y(T)),
geN’

1s injective and has finite cokernel, i.e. T can be viewed as a lattice in ngN’ 0.

Proof. Any t € T in the kernel of this map kills every g € N’. As the elements of N’ form a basis
of Si(I'), the operator t is the zero endomorphism. This proves injectivity.

We will now show that the map has finite cokernel. Note that the (set) map ¥ ® Q, : N/ —
Homaralg(T ® Q. Q) — Homg, (T ® Q, Q) given by g — A\, ® Q, is injective (because ¥ is
injective). Suppose there is a linear relation de/\f’ cgAg = 0. Consider the form gy = de/\/’ cqg €
S(T'2). Tt is clear that gg is an eigenform for all the operators in T ® Q, with all eigenvalues zero.
By strong multiplicity one we conclude that gg = 0. As the elements of N’ (being an orthogonal
basis of Si(I'2)) form a linearly independent set, we get that ¢, = 0 for all g € 7. Thus the set
{A\g | g € N’} is a linearly independent subset of Homg (T ® Qy, Q). Hence

(72) dlmaz T® Q@ - dlmaé Homaé (T ® 6@766) > #N/

Tensoring the map (7.1) with Q, we get a corresponding map T ® Q, — [] gEN Q,, which is
injective because (|7.1)) is. Thus it must also be surjective by (7.2). Hence the map ((7.1)) has finite
cokernel. 0

We now identify T with the image of the map (|7.1). We note that T is a semi-local, complete,
reduced (-algebra and one has the following decomposition

r- [ T
meMaxSpecT

where T}, is the localization of T at the maximal ideal m. Let A be the subset of A/’ consisting of
all the g € N7 which satisfy

Yg(T) = Apn2(T) (mod A) for all T € T.
¢
Then there is a maximal ideal m € MaxSpecT such that the map T — [] gen’ O — IT gen O factors

through Ty,. We fix this m from now on.
Set J C T to be the Eisenstein ideal, i.e., J is the ideal of T generated by the set

(T®(p)  (tr p(Froby) + tr ps(k — 2)(Froby)) | p £ £}.
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Write Jy, to be the image of J under the canonical map T — T4,.

Recall that we fixed in Section the weight k& > 4 even and prime ¢ > 4k — 5 and imposed
Assumption 3.1 on the field E/Q,. We also fixed the Fontaine-Laffaille interval I = [3 — 2k, 2k — 3].
Let ¢ € S(I'1) be a newform such that p, is irreducible.

For the rest of this section we also impose Assumption and fix the corresponding f € Si(I'2).
Then f € N, ie., Tn/Jm #0. Let R = R5 ; be the universal deformation ring defined in Section @

Theorem 7.2. Recall that we impose Assumptions and [6.9.  Then there exists a surjective
O-algebra map ¢ : R — Ty such that ¢(Iye) = Jm and Jy is a mazimal ideal of Ty. If, in addition
dimpg H}(Q, adp,(k —2)) <1, then all of the following are true:

e the map ¢ is an isomorphism;

o the Hecke ring Ty is isomorphic to O;

o the Fisenstein ideal Jy is principal.

Proof. Let g € N. Then by Lemma [5.2] there exists a G'q-stable lattice with respect to which

one has p, = ['% 7s ( ]:_ 2)] and is not semi-simple. Hence the % gives rise to an element in

H}(Q,W[)]), where W = ad’p4(2 — k) ©@0 E/O.

By and Proposition we get H}(Q, WIA]) = H}(Q, W)[A]. The latter group is cyclic by
Assumption (ii), so we must have that p, = p, and so after adjusting the basis if necessary we
get that pg, is a deformation of py.

This implies that for every g € N we get an O-algebra (hence continuous) map ¢4 : R — O with
the property that tr p"V(Frob,) — Ay (T®)(p)). This property completely determines g because
R is topologically generated by the set {tr p""V(Frob,) | p # £} by Proposition 7.13 in [BK13|.
Putting these maps together we get an O-algebra map ¢ : R — [] gen O whose image is an O-
subalgebra of [] .\ O generated by {T@(p) | p # £}. We now claim that this subalgebra equals
Ty,. Indeed, one clearly has ¢(R) C Ty. To see the opposite inclusion consider the characteristic
polynomial f,(X) € R[X] of p"™¥(Frob,) for p # ¢. Combining Theorem [2.1| with the definition of
L,(X, f;spin) we see that the coefficient at X? is mapped by ¢ to T3 (p)? — T1(2) (p?) — p?F— ¢
[Iyen O- As TP (p) and p?*~* both belong to p(R), so therefore must T1(2) (p?). Hence ¢(R)
contains all the Hecke operators away from ¢, i.e., ¢(R) = Ty. We denote the resulting O-algebra
epimorphism R — Ty, again by ¢. We claim that ¢(le) C Jp.

Indeed, as ¢(tr p™ (Frob,)) = T (p) and

T (p) — (tr py(Froby) + tr p(k — 2)(Frob,)) € Ja
for all primes p # £, one has
tr " (Froby) — (tr o (Froby) + tr ps(k — 2)(Froby)) € ¢~ (Ju).
By the Chebotarev Density Theorem, this implies that
tr p"™Y = tr pg + trpg(k —2)  (mod ¢ (Jm)),

so Ie C ¢ 1(Jm). As @ is a surjection, this implies that ¢(I.) C Jn. Hence ¢ gives rise to a
sequence of O-algebra surjections R/I,c — Tn/@(Ire) = Tw/Jm. As R/I.. = F by Corollary
we conclude that all these surjections are isomorphisms (note that Ty, /Jy # 0), hence ¢(Ie) = Jn
and Jy, is maximal. This proves the first claim.

Now assume in addition that dim H}(Q, adp,(k —2)) < 1. Then Theorem m gives us that
R = O, so we get that ¢ is an isomorphism, and so R =2 T, 2 O. In particular, Jy, is a principal
ideal. O
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Corollary 7.3. If Ju is not principal, then
dimg H;(Q,ad py(k —2)) > 1.
If in addition £ 1 By_o then
dimp H}(Q,ad’ pys(k — 2)) > 1.
Proof. The first inequality is just a restatement of one of the claims of Theorem [7.2] The second
follows from the first one and Proposition O

The latter can potentially be done by counting the depth of Eisenstein congruences as the
following result shows.

Proposition 7.4. For each g € N write mgy for the largest positive integer m such that g = Eil
mod N'™. If

(7.3) valy(# T/ Jm) < [F: Fl - Y my

geN
then Jy s not principal.
Proof. Set A = ng/\/ Ay, where Ay = O for all g € N. Let ¢y : A — Ay be the canonical
projection. Since by Lemma T is a full rank O-submodule of ng A O we conclude that the
local complete O-subalgebra T, C A is of full rank as an O-submodule and Jy, C Ty, is an ideal

of finite index. Set Ty = ¢y(Tm) = Ag = O and J; = ¢¢(Jm) = A"90O. Hence we are in the setup
of section 2 of [BKK14]. Assume Jy, is principal. Then Proposition 2.3 in [BKK14] gives us that

(7.4) #Tw/ T = [ [ #T0/ s
geN
Note that one has

(7.5) valy | [ #Ty/75 | = [F:Fo- > my.
gEN geEN
This equality together with (7.4 contradicts the inequality (7.3)). O

Corollary 7.5. Let my, be defined as in Proposition 7.4 If
(7.6) > my>1

geN

then Ju ts not principal and

dimg H;(Q,ad py(k — 2)) > 1.
If in addition €t By_o then

dimg H}(Q,ad’py(k — 2)) > 1.
Proof. Note that from the proof of Theorem we get that Ty /Jm = F, even without assuming
dimg H}(Q, adpy(k—2)) < 1. Assume that Jy, is principal. Then from (7.4) and (7.5)) we conclude
that > gen Mg = 1, which contradicts assumption (7.6). Hence Jy, is not principal.

The Selmer group inequalities now follow from Corollary O

Remark 7.6. Corollary|7.3|directly ties the cyclicity of the Selmer group H }(Q, ad py(k—2)) with
the principality of the Eisenstein ideal Jy,. We note that Assumption (ii) implies the equality
Tw/Jm = F. Contrary to what one might think, the existence of several forms g = E;S ; mod X does
not preclude this equality. For example, if there are exactly two linearly independeht eigenforms
91,92 € N with mg, = my, = 1 such that g; # go mod A then Ty, 2 O xp O = {(a,b) € O x O |
a =b mod A} and in this case Jy is the maximal ideal, i.e. Ty/Jm = F, so Corollary applies
and dimg H;(Q, ad py(k — 2)) > 1.
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