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Abstract. We construct a mod ℓ congruence between a Klingen Eisenstein series (associated to a
classical newform ϕ of weight k) and a Siegel cusp form f with irreducible Galois representation. We
use this congruence to show non-vanishing of the Bloch-Kato Selmer group H1

f (Q, ad0 ρϕ(2− k)⊗
Qℓ/Zℓ) under certain assumptions and provide an example. We then prove an R = dvr theorem for
the Fontaine-Laffaille universal deformation ring of ρf under some assumptions, in particular, that

the residual Selmer group H1
f (Q, ad0 ρϕ(k−2)) is cyclic. For this we prove a result about extensions

of Fontaine-Laffaille modules. We end by formulating conditions for when H1
f (Q, ad0 ρϕ(k − 2)) is

non-cyclic and the Eisenstein ideal is non-principal.

1. Introduction

The construction of Eisenstein congruences has a long and consequential history. Interesting in
their own right, their significance is amplified by the existence of Galois representations attached to
the congruent forms, as the ones attached to Eisenstein series are always reducible while the ones
attached to cusp forms are often irreducible. Using various generalizations of the result known as
Ribet’s Lemma, they lead to the construction of non-zero elements in Selmer groups. This direction
was first explored by Ribet himself in the context of the group GL2 in [Rib76] and later used by
many other authors in a variety of different settings e.g. [Wil90], [Bro07], [SU14].

In a different direction, such congruences can play a crucial role in proving modularity of defor-
mations of reducible residual Galois representations ρ, see e.g. [SW97], [BK13], [BK20], [BK23],
[Cal06], [WWE20], and [Wak23]. In [Cal06] Calegari introduced a method of proving modularity
assuming ρ is unique up to isomorphism, which relies on proving the principality of the ideal of
reducibility of the universal deformation ring R of ρ. This method was developed further by Berger
and Klosin [BK11, BK13, BK20] and Wake and Wang-Erickson [WWE20] and successfully applied
in many contexts (see also [Ake23, Hua23]). It relies heavily on the ideas of Bellaiche and Chenevier
[BC09] and their study of Generalized Matrix Algebras (GMAs).

In this paper we pursue both of these directions in the case of Klingen Eisenstein series of level
one on the group Sp4. More precisely, let k > 4 be an even integer and ϕ a classical weight k Hecke

eigenform of level 1 (i.e., on the group GL2/Q). Write E2,1
ϕ for the (appropriately normalized)

Klingen Eisenstein series on Sp4 induced from ϕ. It is a Siegel modular form of weight k and full
level. Congruences between Klingen Eisenstein series and cusp forms have been studied previously
by Katsurada and Mizumoto [KM12, Miz86] and Urban (unpublished). Katsurada and Mizumoto
obtain congruences as an application of the doubling method. In this paper, we produce congruences
via a much shorter argument using results of Yamauchi [Yam21]. The trade-off is that while our
proof is much shorter, we obtain congruences only modulo a prime ℓ whereas Katsurada and
Mizumoto obtain congruences modulo powers of ℓ. However, the hypotheses required for our
result are different and less restrictive than those needed in [KM12]. We show that under certain

conditions E2,1
ϕ is congruent to some cusp form f of the same weight and level with irreducible Galois

representation (Theorem 3.5). This is the first main result of the paper. These congruences are
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governed by the numerator of the (algebraic part) of the symmetric square L-function Lalg(2k −
2,Sym2ϕ) of ϕ. We also exhibit a concrete example when the assumptions of Theorem 3.5 are
satisfied (see Example 3.6).

We then proceed to show that these congruences give rise (under some assumptions) to non-
trivial elements in the Selmer group H2−k := H1

f (Q, ad ρϕ(2− k)⊗Qℓ/Zℓ). Here ρϕ is the Galois
representation attached to ϕ by Deligne and we use the Fontaine-Laffaille condition at ℓ. Assuming
the Vandiver Conjecture for ℓ we also deduce the non-triviality of the Selmer groupH1

f (Q, ad
0 ρϕ(2−

k)⊗Qℓ/Zℓ) (Corollary 5.9 and Remark 5.8). This is our second main result and gives evidence for
new cases of the Bloch-Kato conjecture. This conjecture was studied for other twists of ad ρϕ by
[DFG04] and [Klo09]. In [Urb01] Urban assumed the existence of Klingen Eisenstein congruences
to prove a result towards the main conjecture of Iwasawa theory for the adjoint L-function.

To properly analyze these Selmer groups we require some results on extensions of Fontaine-
Laffaille modules whose proofs appear to be absent in the literature. In Section 4 we carefully
study certain aspects of Fontaine-Laffaille theory, in particular, prove the Hom-tensor adjunction
formula and give a precise definition of Selmer groups with coefficient rings of finite length.

Given the congruence E2,1
ϕ ≡ f (mod ℓ) we also study deformations of a non-semi-simple Galois

representation ρ : GQ → GL4(Fℓ) whose semi-simplification arises from the Klingen Eisenstein
series. Such a representation is reducible with two 2-dimensional Jordan-Holder blocks and more
precisely one has

ρ =

[
ρϕ ∗

ρϕ(k − 2)

]
.

Conjecturally such representations should arise as mod ℓ reductions of Galois representations at-
tached to Siegel cusp forms which are congruent to E2,1

ϕ mod ℓ. We assume that dimH2−k[ℓ] = 1,

where [ℓ] indicates ℓ-torsion. This can be seen as a refinement of the uniqueness assumption of
[SW97] similar to the one in [BK13] and as in [BK13, Cal06] we prove the principality of the re-
ducibility ideal of the universal deformation. However, this principality cannot be achieved through
the method of [BK13] because the representation in question fails to satisfy the strong self-duality
property required for the method of [loc.cit.]. Instead we improve on a recent result of Akers [Ake23]
which replaces the self-duality condition with a one-dimensionality assumption on the Selmer group
Hk−2 := H1

f (Q, ad ρϕ(k−2)) of the ‘opposite’ Tate twist of ad ρϕ. With these assumptions in place
we are able to show that the universal deformation ring R is a discrete valuation ring and prove a
modularity result guaranteeing that the unique deformation of ρ indeed arises from a Siegel cusp
form congruent to E2,1

ϕ (Theorem 6.20). This is the third main result of the paper.

We then proceed to formulate conditions for non-cyclicity of the Selmer group Hk−2. While
many results in the literature give bounds on the orders of Selmer groups (in particular, Corollary
5.9 gives such a lower bound on H2−k), the structure of these groups is notoriously mysterious. In
this paper we prove that if the (local) Klingen Eisenstein ideal Jm is not principal then Hk−2 is
not cyclic (Corollary 7.3). We further refine this result by providing a criterion for non-principality

in terms of the depth of congruences between cusp forms and E2,1
ϕ (Corollary 7.5). An intriguing

feature of these results is that Hk−2 is non-critical, i.e. this Selmer group is not controlled by a
critical L-value in the sense of Deligne.

The authors would like to thank Jeremy Booher and Neil Dummigan for helpful discussions.

2. Background and notation

2.1. Galois representation. Given a field F we denote by GF its absolute Galois group. Fix a
rational prime ℓ > 2. If M is a topological Zℓ[GF ]-module (i.e. the GF -action is continuous) we
set H i(F,M) to be the ith cohomology group of continuous cocycles.

For such M we set
M∨ = Homcont(M,Qℓ/Zℓ)
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to be the Pontryagin dual of M and we will write M(n) =M ⊗ ϵn for the n-th Tate twist where ϵ
denotes the ℓ-adic cyclotomic character.

For each prime p, we fix an embedding Q ↪→ Qp. This is equivalent to choosing a prime p of Q
lying over p and fixes an isomorphism Dp

∼= GQp , where Dp is the decomposition group of p. We

will denote by Ip ⊂ Dp the corresponding inertia group. We also fix an isomorphism Qℓ
∼= C.

Let E denote a finite extension of Qℓ with valuation ring O, uniformizer λ, and residue field F.
For a continuous homomorphism ρ : GF → GLn(O) we write ρ : GF → GLn(F) for the mod

λ reduction of ρ. We note that given a continuous representation ρ : GF → GLn(E) one can
always find a GF -stable lattice inside its space and thus get a continuous homomorphism valued
in GLn(O). While the isomorphism class of this homomorphism may depend on the choice of this
lattice, the semi-simplification of its reduction does not, so ρss is always well-defined.

2.2. Siegel modular forms. Let n be a positive integer. Let Matn denote the affine group scheme
over Z of n × n matrices. For γ ∈ Matn, we write |γ| for the determinant of γ. Given a matrix
γ ∈ Mat2n, we will often write it as

γ =

[
aγ bγ
cγ dγ

]
where the blocks are in Matn. We will denote by GLn the affine group scheme over Z of invertible
n× n matrices. Recall that the degree n symplectic group is defined by

GSp2n =
{
g ∈ GL2n : tgJng = µn(g)Jn, µn(g) ∈ GL1

}
where Jn =

[
0n −1n
1n 0n

]
where 1n is the n by n identity matrix, and µn : GL2n → GL1 is the

homomorphism defined via the equation given in the definition. Write GSp+2n(R) for the subgroup
of GSp2n(R) consisting of elements g with µn(g) > 0. We set Sp2n = ker(µn) and denote Sp2n(Z) by
Γn to ease notation. Note that Sp2 = SL2, the subgroup scheme of GL2 of matrices of determinant
one.

The Siegel upper half-space is given by

hn = {z = x+ iy ∈ Matn(C) : x, y ∈ Matn(R), tz = z, y > 0}
where we write y > 0 to indicate that y is positive definite. The group GSp+2n(R) acts on hn via
γz = (aγz + bγ)(cγz + dγ)

−1.
Let f : hn → C be a function. Set

(f |κγ)(z) = µn(γ)
nk/2j(γ, z)−kf(γz)

for γ ∈ GSp+2n(R) and z ∈ hn where j(γ, z) = det(cγz + dγ). A Siegel modular form of weight k
and level Γn is a holomorphic function f : hn → C satisfying

(f |kγ)(z) = f(z)

for all γ ∈ Γn. If n = 1, we also require the standard growth condition at the cusp. We denote the
C-vector space of Siegel modular forms of weight k and level Γn as Mk(Γn). Any f ∈Mk(Γn) has
a Fourier expansion of the form

f(z) =
∑
T∈Λn

a(T ; f)e(Tr(Tz))

where Λn is defined to be the set of n by n half-integral (diagonal entries are in Z, off diagonal are
allowed to lie in 1

2Z) positive semi-definite symmetric matrices and e(w) := e2πiw. Given a ring
A ⊂ C, we write f ∈Mk(Γn;A) if a(T ; f) ∈ A for all T ∈ Λn.

We define the Siegel operator Φ :Mk(Γn)→Mk(Γn−1) by

Φ(f)(z) = lim
t→∞

f

([
z 0
0 it

])
.
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We say f ∈Mk(Γn) is a cuspform if Φ(f) = 0. Set Sk(Γn) = ker(Φ).
We will now introduce certain Eisenstein series, which will play a prominent role in this paper.

For n ≥ 1 and 0 ≤ r ≤ n define the parabolic subgroup

Pn,r =



a1 0 b1 ∗
∗ u ∗ ∗
c1 0 d1 ∗
0 0 0 tu−1

 ∈ Γn :

[
a1 b1
c1 d1

]
∈ Γr, u ∈ GLn−r(Z)

 .

We define projections

⋆ : hn → hr

z =

[
z⋆ ∗
∗ ∗

]
7→ z⋆

and

⋆ : Pn,r → Γr

γ 7→ γ⋆ =

[
a1 b1
c1 d1

]
.

These allow us to define the Eisenstein series of interest. Let ϕ ∈ Sk(Γ1). The Klingen Eisenstein
series attached to ϕ is the series

E2,1
ϕ (z) =

∑
γ∈P2,1\Γ2

ϕ((γz)⋆)j(γ, z)−k

where z ∈ h2. The Eisenstein series converges for k > 4, see [Kli90] Theorem 1 page 67 for example.

Note that [Kli90] Proposition 5 page 68 gives Φ(E2,1
ϕ ) = ϕ.

Given two Siegel modular forms f1, f2 ∈ Mk(Γn) with at least one a cusp form, we define the
Petersson product of f1 and f2 by

⟨f1, f2⟩ =
∫
Γn\hn

f1(z)f2(z)(det y)
kdµz,

where z = x+ iy with x = (xα,β), y = (yα,β) ∈ Matn(R),

dµz = (det y)−(n+1)
∏
α≤β

dxα,β
∏
α≤β

dyα,β

with dxα,β and dyα,β the usual Lebesgue measure on R.

Given γ ∈ GSp+2n(Q), we write T (γ) to denote the double coset ΓnγΓn. We define the usual
action of T (γ) on Siegel modular forms by setting

T (γ)f =
∑
i

f |kγi

where the γi are given by the finite decomposition ΓnγΓn =
∐
i Γnγi and f ∈ Mk(Γn). Let p be

prime and define Hecke operators

T (n)(p) = T (diag(1n, p1n))

and for 1 ≤ i ≤ n set

T
(n)
i (p2) = T (diag(1n−i, p1i, p

21n−i, p1i)).

The spacesMk(Γn) and Sk(Γn) are both stable under the action of T (n)(p) and T
(n)
i (p2) for 1 ≤ i ≤ n

and all p. We say a nonzero f ∈Mk(Γn) is an eigenform if it is an eigenvector of T (n)(p) and T
(n)
i (p2)

for all p and all 1 ≤ i ≤ n. As we will be focused on the case n = 2, we specialize to that case.
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We let T′ denote the Z-subalgebra of EndC(Sk(Γ2)) generated by the Hecke operators T (2)(p) and

T
(2)
1 (p2) for all primes p.
Recall that E/Qℓ denotes a finite extension with valuation ring O and uniformizer λ. Given

eigenforms f1, f2 ∈ Mk(Γn;O), we write f1 ≡ev f2 (mod λ) if λf1(T ) ≡ λf2(T ) (mod λ) for all
T ∈ T′ where Tfi = λfi(T )fi.

Let f ∈ Sk(Γn) be an eigenform. Associated to f is a cuspidal automorphic representation πf of
PGSp2n(A), where A denotes the ring of adeles of Q. We can decompose πf into local components

πf =
⊗′ πf,p, where the tensor product is the restricted tensor product and runs over all primes

p with πf,p an Iwahori spherical representation of PGSp2n(Qℓ). The representation πf,p is given

as π(χ0, χ1, . . . , χn) for χi unramified characters of Q×
ℓ . One can see Section 3.2 of [AS01] for the

definition of this spherical representation. Let α0(p; f) = χ0(p), . . . , αn(p; f) = χn(p) denote the
p-Satake parameters of f . Note these are normalized so that

α0(p; f)
2α1(p; f) · · ·αn(p; f) = 1.

We drop f and/or p in the notation for the Satake parameters when they are clear from context.

Set α̃0 = p
2nk−n(n+1)

4 α0 and

Lp(X, f ; spin) = (1− α̃0X)

n∏
j=1

∏
1≤i1≤···≤ij≤n

(1− α̃0αi1 · · ·αijX).

The spinor L-function associated to f is given by

L(s, f ; spin) =
∏
p

Lp(p
−s, f ; spin)−1.

The product converges for ℜ(s) > k+1, has meromorphic continuation to the entire complex plane,
and satisfies a functional equation. We will be interested in the cases of n = 1 and n = 2. In the
case n = 1, we set

L(s, ϕ) := L(s, ϕ; spin).

Note that in this case

Lp(p
−s, ϕ; spin) = (1− λϕ(p)p−s + pk−1−2s)

and we write λϕ(p) is the eigenvalue of T (p) := T (1)(p) corresponding to the eigenform ϕ ∈ Sk(Γ1).
In the case that n = 2, one has

Lp(p
−s, f, spin) =(1− λf (p)p−s + (λf (p)

2 − λf (p;T
(2)
1 (p2))− p2k−4)p−2s

− λf (p)p2k−3−3s + p4k−6−4s)

where we write λf (p) is the eigenvalue of T (2)(p) corresponding to f and λf (p;T
(2)
1 (p2)) for the

eigenvalue T
(2)
1 (p2) corresponding to f .

In the n = 1 case we will also be interested in the symmetric square L-function attached to ϕ:

L(s, Sym2 ϕ) =
∏
p

Lp(p
−s, Sym2 ϕ)−1

where

Lp(X,Sym
2 ϕ) = (1− α̃0

2X)(1− α̃0
2α1X)(1− α̃0

2α2
1X).

The symmetric square L-function converges in the right half-plane ℜ(s) > k, satisfies a functional
equation, and has analytic continuation to the entire complex plane.

The following result of Laumon and Weissauer attaches an ℓ-adic Galois representation to any
eigenform f ∈ Sk(Γ2).
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Theorem 2.1 ([Wei05] Theorem 1). Let f ∈ Sk(Γ2) be an eigenform. For a sufficiently large finite
extension F/Qℓ one has Lq(X, f, spin) ∈ F [X] for all primes q ̸= ℓ and there is a four dimensional
semisimple continuous representation

ρf,ϖ : GQ → GL4(F )

which is unramified outside of ℓ so that for q ̸= ℓ one has

Lq(X, f ; spin) = det(1− ρf,ϖ(Frobq)X)

where ϖ is the uniformizer of F . The eigenvalues of ρf,ϖ(Frobq) are algebraic integers for q ̸= ℓ.

We will write ρf for ρf,ϖ when ϖ is clear from context.

3. Congruence

We keep the notation of section 2. Throughout this section we fix an even weight k > 4 and an
odd prime ℓ and make the following assumption.

Assumption 3.1. Given an even weight k > 4 and prime ℓ assume that E/Qℓ is sufficiently
large to contain the fields F from Theorem 2.1 for all forms f ∈ Sk(Γ2). We also assume that
for every eigenform ϕ ∈ Sk(Γ1) the field E contains all the Hecke eigenvalues of ϕ as well as the
value Lalg(2k − 2,Sym2 ϕ) (see (3.1) for the definition). In addition we suppose that E contains a
primitive cube root of unity.

Recall that we denote the valuation ring of E by O. Let ϕ ∈ Sk(Γ1) be an eigenform and consider

the Klingen Eisenstein series E2,1
ϕ . In this section we show under certain conditions that E2,1

ϕ is

eigenvalue-congruent to a cuspidal Siegel modular form with irreducible Galois representation.
Write

E2,1
ϕ (z) =

∑
T≥0

a(T ;E2,1
ϕ )e(Tr(Tz)).

For T that are singular, i.e., |T | = 0, one has T is unimodularly equivalent to

[
n 0
0 0

]
for some

n ∈ Z≥0. For such T , one has a(T ;E2,1
ϕ ) = a(n;ϕ) where ϕ(z) =

∑
n>0 a(n;ϕ)e(nz).

We use the following result to prove our congruence.

Corollary 3.2 ([Yam21] Corollary 2.3). Assume ℓ ≥ 7. Let g be a Hecke eigenform in Mk(Γ2;O)
with Fourier expansion g(z) =

∑
T≥0 a(T ; g)e(Tr(Tz)). Assume that λ | a(T ; g) for all T with

|T | = 0 and that there exists at least one T > 0 with a(T ; g) ∈ O×. Then there exists a Hecke
eigenform f ∈ Sk(Γ2;O) so that g ≡ev f ̸≡ev 0 (mod λ).

For T =

[
m r/2
r/2 n

]
, we say T is primitive if gcd(m,n, r) = 1. We set |2T | = ∆(T )f2 for a

positive integer f and where −∆(T ) is the discriminant of the quadratic field Q(
√
−|2T |). We set

χT =
(
−∆(T )

·

)
, the quadratic character associated to the field Q(

√
−|2T |).

Define

ϑT (z) =
∑
a,b∈Z2

e(z(ma2 + rab+ nb2))

=
∑
n≥0

b(n;ϑT )e(nz).

Given v ∈ Z≥1, set

ϑ
(v)
T (z) =

∑
n≥0

b(v2n;ϑT )e(nz).
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One can check that ϑ
(v)
T ∈M1(Γ(4|T |)) where Γ(N) = ker (SL2(Z)→ SL2(Z/NZ)) and Mk(Γ(N))

denotes the modular forms of weight k and level Γ(N). Set

D(s, ϕ, ϑ
(v)
T ) =

∑
n≥1

a(n;ϕ)b(v2n;ϑT )n
−s.

We have that D(s, ϕ, ϑ
(v)
T ) converges in a right half-plane with meromorphic continuation to the

entire complex plane ([Shi76]). Set

(3.1) Lalg(2k − 2, Sym2 ϕ) :=
L(2k − 2,Sym2 ϕ)

π3k−3⟨ϕ, ϕ⟩
,

Lalg(k − 1, χT ) =
∆(T )k−3/2L(k − 1, χT )

πk−1
,

and

Dalg(k − 1, ϕ, ϑ
(v)
T ) =

D(k − 1, ϕ, ϑ
(v)
T )

πk−1⟨ϕ, ϕ⟩
.

We have each of these terms is algebraic, see ([Shi76], [Stu80], [Zag77]). Moreover, we have via
[Zag77] Equation (22) that if ℓ > k − 1, then Lalg(k − 1, χT ) is ℓ-integral.

Theorem 3.3. [Miz84] Let ϕ ∈ Sk(Γ1) be a normalized eigenform with a Fourier expansion as
above. Let T > 0 be primitive. We have

a(T ;E2,1
ϕ ) = (−1)k/2 (k − 1)!

(2k − 2)!
2k−1 Lalg(k − 1, χT )

Lalg(2k − 2, Sym2 ϕ)

·
∑
m|f
m>0

MT (fm
−1)

∑
t|m
t>0

µ(t)Dalg(k − 1, ϕ, ϑ
(m/t)
T )

where
MT (a) =

∑
d|a
d>0

µ(d)χT (d)d
k−2σ2k−3(ad

−1)

and
σs(d) =

∑
g|d
g>0

gs.

Note that while this theorem is only stated for Fourier coefficients indexed by primitive T , we
have that Fourier coefficients indexed by non-primitive T are an integral linear combination of
Fourier coefficients indexed by primitive T by [Miz84] Equation 1.3, so we only need to consider
the primitive T to guarantee the hypotheses of Corollary 3.2 are satisfied.

We have the following congruence result.

Lemma 3.4. Assume ℓ > 4k − 7. Let f ∈ Sk(Γ2;O) be an eigenform. If there exists a normal-

ized eigenform ϕ ∈ Sk(Γ1;O) so that f ≡ev E
2,1
ϕ (mod λ) and that ρϕ is irreducible, then ρf is

irreducible.

Proof. We know via [Wei05] that if ρf is reducible, then the automorphic representation associated
to f is either CAP or a weak endoscopic lift. Moreover, by [PS09] Corollary 4.5 since f ∈ Sk(Γ2)
and k > 2, the automorphic representation attached to f can be CAP only with respect to the
Siegel parabolic, i.e., f is a classical Saito-Kurokawa lift. Suppose that f is a Saito-Kurokawa lift
of ψ ∈ S2k−2(Γ1). Then we have ρssf = ρψ⊕ ϵk−1⊕ ϵk−2 where ϵ is the mod ℓ reduction of the ℓ-adic

cyclotomic character. Using the fact that f ≡ev E
2,1
ϕ (mod λ) and that the eigenvalues of E2,1

ϕ are

given by λ(p;E2,1
ϕ ) = a(p;ϕ)+pk−2a(p;ϕ), the Brauer-Nesbitt and Chebotarev Theorems give that
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ρssf = ρϕ⊕ρϕ(k−2), where recall that we write ρϕ(k−2) for ρϕ⊗ ϵk−2. This is a contradiction if ρϕ
is irreducible. Thus, f cannot be a Saito-Kurokawa lift. It remains to show that the automorphic
representation associated to f is not a weak endoscopic lift. The possible decompositions of ρf
are given in [SU06] Theorem 3.2.1 under the assumption that ℓ > 4k − 7. Of these, the only case
remaining to check is Case B(v), which states if ρf = σ ⊕ σ′ with σ and σ′ both 2-dimensional,

then det(σ) = det(σ′). In our case, this would require det(ρϕ) = det(ρϕ(k − 2)), i.e., ϵk−1 = ϵ2k−3,
which is impossible by our assumption that ℓ > 4k − 7. Thus, ρf is irreducible. □

Theorem 3.5. Assume that ℓ > 4k − 7. Let ϕ ∈ Sk(Γ1;O) be a normalized eigenform. Suppose
that λ | Lalg(2k − 2,Sym2 ϕ). Furthermore, assume there exists T0 > 0 so that

valλ

(
Lalg(2k − 2, Sym2 ϕ)a(T0, E

2,1
ϕ )

)
≤ 0.

Then there exists an eigenform f ∈ Sk(Γ2;O) so that

E2,1
ϕ ≡ev f (mod λ).

If in addition ρϕ is irreducible, then ρf is irreducible.

Proof. Set H2,1
ϕ (z) = Lalg(2k − 2, Sym2 ϕ)E2,1

ϕ (z). For T ≥ 0, define

c(T ) = valλ(a(T ;H
2,1
ϕ )).

Let c = minT≥0 c(T ). Since H2,1
ϕ ∈ Mk(Γ2), the Fourier coefficients a(T ;H2,1

ϕ ) have bounded

denominators so c is well-defined ([Shi75]). Moreover, our assumption that there is a T0 > 0 with

valλ(a(T0;H
2,1
ϕ )) = valλ

(
Lalg(2k − 2, Sym2 ϕ)a(T0, E

2,1
ϕ )

)
≤ 0 gives that c ≤ 0. Set

G2,1
ϕ (z) = λ−cH2,1

ϕ (z).

We have a(T ;G2,1
ϕ ) ∈ O for all T ≥ 0 since c(T ) − c ≥ 0 for all T ≥ 0. Observe that for T with

|T | = 0, we have a(T ;G2,1
ϕ ) = λ−cLalg(2k − 2,Sym2 ϕ)a(n;ϕ) for some n ∈ Z≥0. Since a(n;ϕ) ∈ O

by assumption and −c ≥ 0, this gives λ | a(T ;G2,1
ϕ ) for all T with |T | = 0, i.e., all the Fourier

coefficients indexed by singular T vanish modulo λ. Moreover, since c = c(T̃ ) for some T̃ , we have

a(T̃ ;G2,1
ϕ ) ∈ O× for some T̃ . Since c ≤ 0 and λ | a(T ;G2,1

ϕ ) for all singular T , we have T̃ > 0.

Thus, Corollary 3.2 and the fact that G2,1
ϕ and E2,1

ϕ have the same eigenvalues gives a non-trivial

eigenform f ∈ Sk(Γ2;O) so that

E2,1
ϕ ≡ev f (mod λ).

One now applies Lemma 3.4 to obtain that ρf is irreducible. □

Example 3.6. Consider the space M26(Γ2). This space has dimension seven and is spanned by

E2,0 (Siegel Eisenstein series), E2,1
ϕ (Klingen Eisenstein series), three Saito-Kurokawa lifts, and two

non-lift forms Υ1 and Υ2 where here ϕ ∈ S26(Γ1) is the unique newform given by

ϕ(z) = e(z)− 48e(2z)− 195804e(3z) + · · · .

We have via [Dum01] that

Lalg(50,Sym
2 ϕ) =

241 · 163 · 187273
326 · 510 · 77 · 114 · 132 · 172 · 19 · 232 · 29 · 31 · 37 · 41 · 43 · 47 · 657931

We consider ℓ ∈ {163, 187273}. We provide a different argument for each prime in producing an
example.
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The Klingen Eisenstein series associated to ϕ is given in the beta version of LMFDB. By consid-

ering the Fourier coefficients indexed by

[
1 0
0 0

]
and

[
2 0
0 0

]
one can see that the Klingen Eisenstein

series given there, say ELMFDB
ϕ , is given by

E2,1
ϕ (z) = −

ELMFDB
ϕ (z)

26 · 33 · 11 · 19 · 163 · 187273
.

We have from LMFDB that

a

([
1 1/2
1/2 1

]
;E2,1

ϕ

)
=

22 · 5 · 43
11 · 19 · 163 · 187273

Consider G2,1
ϕ (z) = Lalg(50, Sym

2 ϕ)E2,1
ϕ (z). We have for ℓ as above that ℓ | a(T ;G2,1

ϕ ) for all T with

|T | = 0 and a

([
1 1/2
1/2 1

]
;G2,1

ϕ

)
̸≡ 0 (mod ℓ). Thus by Theorem 3.5 there exists a non-trivial

Hecke eigenform f ∈ Sk(Γ2;Zℓ) with E
2,1
ϕ ≡ev f (mod ℓ).

Consider first the prime ℓ = 163 and suppose that ρssϕ,163 = ψ1 ⊕ ψ2 for some characters ψ1, ψ2.

Since ρϕ is unramified for all p ̸= ℓ we see that ψ1 and ψ2 are each an integer power of ϵ (see the

proof of Lemma 5.3). As 163 ∤ a(163;ϕ) we know ϕ is ordinary at 163 and we get ρssϕ,163 = ϵ25 ⊕ 1.

By [Rib76] Proposition 2.1 we can find a lattice such that

ρϕ,163 =

[
1 ∗
0 ϵ25

]
̸∼= 1⊕ ϵ25.

One can use ordinarity of ϕ to show that ∗ gives an unramified 163-extension of Q(ζ163) (see
e.g. the proof of Theorem 4.28 in [BK23].) By Herbrand’s Theorem this implies that 163 | B26.

However, one can check this is not true, so we must have that ρϕ,163 is irreducible and so E2,1
ϕ must

be congruent (modulo 163) to a cuspform f that is not a Saito-Kurokawa lift, i.e. ρf is irreducible
by Theorem 3.5. One uses LMFDB to check that f = Υ2.

Now consider the case that ℓ = 187273. In this case it is less practical to calculate a(187273;ϕ),

so we directly eliminate the possibility that E2,1
ϕ is congruent to a Saito-Kurokawa lift modulo

187273. The space to consider is S50(Γ1). This space has one Galois conjugacy class of newforms
consisting of three newforms, call them ψ1, ψ2, and ψ3. Each newform has a field of definition Kψi

generated by a root αi of

c(x) = x3 + 24225168x2 − 566746931810304x− 13634883228742736412672.

One has that λ(2, E2,1
ϕ ) = −805306416 and that λ(2, ψi) = 249+248+αi. One uses SAGE to check

that λ(2, E2,1
ϕ ) ̸≡ λ(2, ψi) (mod 187273), so E2,1

ϕ must be congruent to a cusp form that is not a

Saito-Kurokawa lift. One uses LMFDB to see that E2,1
ϕ ≡ev Υ1 (mod 187273).

4. Extensions of Fontaine-Laffaille modules

In this section we gather various facts (in particular Proposition 4.9 and Proposition 4.24) about
extensions of Fontaine-Laffaille modules, which we use in this article but which to the best of our
knowledge have not been published elsewhere.

4.1. Definitions. We keep our assumption that ℓ is an odd prime. We fix integers a, b such that
0 ≤ b− a ≤ ℓ− 2. In this section let E be an arbitrary finite extension of Qℓ with ring of integers
O, uniformizer λ and residue field F. Write LCAO (respectively LCNO) for the category of local
complete Artinian (respectively Noetherian) O-algebras with residue field F. For a category C we
will write X ∈ C to mean that X is an object of C.

Definition 4.1 ([Kal19] Definition 2.3/[Boo19] Definition 4.1).
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(1) A Fontaine-Laffaille module is a finitely generated Zℓ-moduleM together with a decreasing
filtration by Zℓ-module direct summands M i for i ∈ Z such that there exists k ≤ l with
M i = M for i ≤ k and M i+1 = 0 for i ≥ l, and a collection of Zℓ-linear maps ϕiM :

M i → M such that ϕiM |M i+1 = ℓϕi+1
M for all i and M =

∑
i ϕ

i
M (M i). The category of

all Fontaine-Laffaille modules is denoted MF fZℓ
. Morphisms in this category are Zℓ-linear

maps f : M → N satisfying f(M i) ⊂ N i and f ◦ ϕiM = ϕiN ◦ f |M i for all i. We will write

MF ftor,Zℓ
for the full subcategory whose objects are of finite length as a Zℓ-modules.

(2) For a fixed interval [k, l] we denote the full subcategory of MF f?,Zℓ
whose objects M have a

filtration satisfying Mk =M and M l+1 = 0 by MF
f,[k,l]
?,Zℓ

for ? ∈ {∅, tor}.
(3) For any A ∈ LCAO, a Fontaine-Laffaille module over A consists of an object M ∈MF

f,[a,b]
tor,Zℓ

together with a map θ : A → End
MF

f,[a,b]
tor,Zℓ

(M) that makes M into a free finitely generated

module over A in such a way thatM i is an A-direct summand ofM for each i. A morphism
between two such objects is required to additionally preserve the A-structure. We will

denote this category of Fontaine-Laffaille modules over A as MF
f,[a,b]
tor,Zℓ

⊗Zℓ
A.

(4) For M ∈MF
f,[a,b]
tor,Zℓ

⊗Zℓ
A any integer i for which M i/M i+1 ̸= 0 is called a Fontaine-Laffaille

weight for M . The set of Fontaine-Laffaille weights for M will be denoted by FL(M).

Remark 4.2. We impose the stronger restriction on the length of the filtration as in [BK90] Section
4 and [CHT08] Section 2.4.1, compared to that in Section 1.1.2 of [DFG04] or [Kal19] Definition
2.3 (which allow the length to be ℓ− 1).

Remark 4.3. One can also replace Zℓ in MF
f,[a,b]
?,Zℓ

for ? = ∅, tor by the integer ring OK in

a finite unramified extension K of Qℓ and require that the maps ϕiM are Frobenius-semilinear.

The modules M ∈ MF
f,[a,b]
tor,OK

⊗Zℓ
A need to be free modules over OK ⊗Zℓ

A. Via the Fontaine-
Laffaille functor described below this gives rise to crystalline GK-representations, in particular the

equivalence between MF
f,[a,b]
tor,Zℓ

⊗Zℓ
A and Rep

cris,[−b,−a]
free,A (GQℓ

) holds with Zℓ replaced by OK and

GQℓ
replaced by GK (see Theorem 4.16 and [Kal19] Theorem 2.10). As we will have no use for the

general case, to simplify the exposition, we restrict to GQℓ
-representations. We refer the reader to

[Boo19] Section 4.2 and [Kal19] Definition 2.3 and 2.8 for the general case.

Definition 4.4. We introduce the following examples of Fontaine-Laffaille modules:

(i) If 0 ∈ [a, b] we write 1 ∈ MF
f,[a,b]
Zℓ

for the Fontaine-Laffaille module defined by 1i = Zℓ for

i ≤ 0 and 1i = 0 for i > 0. We set ϕi : 1i → 1 to be given by x 7→ ℓ−ix for i ≤ 0.

(ii) For n ∈ [a, b]∩Z defineMn ∈MF
f,[a,b]
tor,Zℓ

to be the 1-dimensional Fℓ-vector space with filtration

M i
n = Mn = Fℓ for i ≤ n, Mn+1

n = 0 and ϕi : M i
n → Mn the 0-map for all i ̸= n, and the

identity map for i = n.

(iii) For any A ∈ LCAO we define Mn,A ∈ MF
f,[a,b]
tor,Zℓ

⊗Zℓ
A to be the free rank one A-module

equipped with the filtration M i
n,A = A for i ≤ n, Mn+1

n,A = 0 and ϕi : M i
n,A → Mn,A given by

x 7→ ℓn−ix for i ≤ n. We put 1A =M0,A.

Definition 4.5 ([Boo19] Definition 4.9). For M ∈MF
f,[a,b]
tor,Zℓ

and s ∈ Z define M(s) to be the same

underlying Zℓ-module, but change the filtration to M(s)i = M i−s for any i ∈ Z. This means that

M(s) ∈MF
f,[a+s,b+s]
tor,Zℓ

.

4.2. Extensions. To ease notation in the rest of this section we put CIA = MF f,Itor,Zℓ
⊗Zℓ

A for

A ∈ LCAO. Here I = [a, b].
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Definition 4.6 (Definition/Lemma). GivenM,N ∈ CIA define a filtration on theA-module HomA(M,N)
by

HomA(M,N)i = {f ∈ HomA(M,N) | f(M j) ⊂ N j+i for all j ∈ Z}
and Zℓ-linear maps ϕi : HomA(M,N)i → HomA(M,N) by

ϕi(f)(ϕjM (m)) = ϕi+jN (f(m))

(note that M =
∑
ϕjM (M j)) for f ∈ HomA(M,N)i and all m ∈ M j and j ∈ Z. We claim this

defines a Fontaine-Laffaille structure and we get

HomA(M,N) ∈MF
f,[a−b,b−a]
tor,Zℓ

⊗Zℓ
A.

Proof. First note that there exists a canonicalA-module homomorphism ψ :M∨⊗AN → HomA(M,N),
where M∨ = HomA(M,A). Definition 4.19 in [Boo19] defines a Fontaine-Laffaille structure on M∨

(and Lemma 4.20 and 4.21 prove that this structure is well-defined and so we get an object in

MF
f,[−b,−a]
tor,Zℓ

⊗Zℓ
A). Definition 4.17 in [Boo19] then gives us the Fontaine-Laffaille structure on

M∨ ⊗A N .
We claim that transferring this structure on M∨ ⊗A N via ψ to HomA(M,N) matches our

definition.
Recall from [Boo19] that

(M∨)i = {f ∈ HomA(M,A)|f(Mk) ⊂ 1i+kA for all k ∈ Z}

and

(M∨ ⊗N)n =
∑
i+j=n

(M∨)i ⊗A N j .

We will first show that ψ((M∨ ⊗ N)n) ⊂ HomA(M,N)n. Let fi ⊗ nj ∈ (M∨)i ⊗A N j . Then

ψ(fi ⊗ nj) : m ∈Mk 7→ fi(m)nj ∈ N j . In fact, the image lies in Nn+k. This is clear for j ≥ n+ k.

If j < n+ k (and hence 0 < i+ k) it follows since fi(m) ∈ 1i+kA = 0. To show the reverse inclusion
ψ((M∨⊗N)n) ⊃ HomA(M,N)n consider f ∈ HomA(M,N)n and let j be maximal among integers
l such that f(M) ⊂ N l. To satisfy f(Mk) ⊂ Nk+n for all integers k we need f(Mk) = 0 for
k+n > j by maximality of j. This means that we need f to factor through M/M1−i for i := n− j.
By [Boo19] Lemma 4.20 we have (M∨)i = HomA(M/M1−i, A) so we get

(M∨)i ⊗N j = HomA(M/M1−i, A)⊗N j
ψ∼= HomA(M/M1−i, N j).

We conclude that f ∈ ψ−1((M∨)i ⊗N j) ⊂ ψ−1((M∨ ⊗N)n).
Now we check the Zℓ-linear maps: Recall from [Boo19] that for f ∈M∨ we have

ϕiM∨(f)(ϕ
j
M (m)) = ϕi+j(f(m))

for all m ∈M j and j ∈ Z. We also have

ϕnM∨⊗AN
=

∑
i+j=n

ϕiM∨ ⊗ ϕjN .

We claim that

ϕnHomA(M,N) ◦ ψ = ψ ◦ ϕnM∨⊗AN
: (M∨ ⊗N)n → HomA(M,N).

For this one calculates that both sides map f ⊗n ∈ (M∨)i⊗Nn−i to the homomorphism, for which

ϕkM (m) 7→

{
0 if i+ k ≥ 0

ϕn+kN (f(m)x) if i+ k ≤ 0
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for anym ∈Mk (for ψ◦ϕnM∨⊗AN
this uses ϕn+kN |Nn−i = ℓk+iϕn−iN for i+k ≤ 0). This claim, combined

with the results in [Boo19] shows that the definition of ϕnHomA(M,N) is well-defined and satisfies the

requirements for HomA(M,N) to be a Fontaine-Laffaille module in MF
f,[a−b,b−a]
tor,Zℓ

⊗Zℓ
A. □

For M,N ∈ CIA consider the map ϕ − 1 : HomA(M,N)0 → HomA(M,N) which takes f to the

homomorphism that sends m =
∑

j ϕ
j
M (mj) to

∑
j

ϕjN (f(mj))− f(m) =
∑
j

(
ϕjN (f(mj))− f(ϕjM (mj))

)
.

Note that ker(ϕ− 1) = HomCI
A
(M,N).

Proposition 4.7 ([CHT08] Lemma 2.4.2, [Kal19] Proposition 2.17). Given M,N ∈ CIA we have
an exact sequence of A-modules (note that HomFil,A(M,N) in [Kal19] equals HomA(M,N)0)

0→ HomCI
A
(M,N)→ HomA(M,N)0

ϕ−1→ HomA(M,N)→ Ext1CI
A
(M,N)→ 0.

Given M,N ∈ CIA we write FL(M) > FL(N) if there is an integer j such that all elements of
FL(M) are greater than or equal to j, and all elements of FL(N) are strictly less than j.

Proposition 4.8. The extension group Ext1CI
A
(M,N) is a finitely generated A-module. Furthermore

one has

(i) If FL(M) > FL(N) then Ext1CI
A
(M,N) ∼= HomA(M,N), in particular it is a free A-module

and rkA(Ext
1
CI
A
(M,N)) = rkA(M)rkA(N).

(ii) If FL(M) < FL(N) then Ext1CI
A
(M,N) = 0.

Proof. This follows from Proposition 4.7. In particular, Ext1CI
A
(M,N) is a quotient of the finitely

generated A-module HomA(M,N). The calculation on [Kal19] p. 238 (“two notable cases”) is

carried out for MF
f,[0,ℓ−1]
tor,Zℓ

⊗Zℓ
A, but applies verbatim to CIA. If FL(M) > FL(N) then this

calculation shows that HomA(M,N)0 = 0, while if FL(M) < FL(N) then one gets HomA(M,N)0 =
HomA(M,N). □

Proposition 4.9 (Hom-tensor adjunction). Let M,N ∈ CIA. Assume that HomA(M,N) equipped
with the filtration as in Definition 4.6 is an object in CIA and that 0 ∈ I. Then there exists a
canonical isomorphism of A-modules:

Ext1CI
A
(M,N) ∼= Ext1CI

A
(1A,HomA(M,N)).
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Proof. The statement follows from the existence of the following commutative diagram with exact
columns:

(4.1) 0

��

0

��

HomCI
A
(M,N)

��

HomCI
A
(1A,HomA(M.N))

��

HomA(M,N)0
ψ′
//

ϕ−1

��

HomA(1A,HomA(M,N))0

ϕ−1

��

HomA(M,N)
ψ
//

α

��

HomA(A,HomA(M,N))

��

Ext1CI
A
(M,N)

ψ̃
//

��

Ext1CI
A
(1A,HomA(M,N))

��

0 0

The exactness of both columns follows from Proposition 4.7. The second horizontal arrow is the
usual isomorphism ψ of A-modules given by f 7→ (a 7→ af) (recall that the underlying module of
the object 1A is A) with the inverse map sending g to g(1), where 1 is the multiplicative identity
of A.

The first horizontal arrow is the restriction ψ′ of ψ to HomA(M,N)0 (note that HomA(M,N)0 is
a subgroup of HomA(M,N) even though ϕ− 1 is not necessarily injective). We need to check that

ψ′ lands in HomA(1A,HomA(M,N))0. By its definition we need to check if f(1jA) ⊂ HomA(M,N)j .

If j > 0 there is nothing to check as then 1jA = 0, so assume that j ≤ 0. Then 1jA = A

and HomA(M,N)j ⊃ HomA(M,N)0. So, it is enough to show that if f ∈ HomA(M,N)0 then
ψ′(f)(A) ⊂ HomA(M,N)0. Let a ∈ A. Then ψ′(f)(a) = af which clearly lies in HomA(M,N)0 as
HomA(M,N)0 is an A-module.

Now let g ∈ HomA(1A,HomA(M,N))0. We need to show that ψ−1(g) lands in HomA(M,N)0.

Again we need to consider ψ−1(g)(1jA). If j > 0, then g = 0, hence we are done. Assume that

j ≤ 0. Then 1jA = A and ψ−1(g) = g(1). As 1 ∈ 10A and g ∈ HomA(1A,HomA(M,N))0 we must
have that g(1) ∈ HomA(M,N)0. So, we are done again.

This shows that ψ′ is a bijection, hence an isomorphism. Hence by the second Four Lemma ψ̃ is
injective, and since it is clearly surjective, it is an isomorphism.

□

Remark 4.10. The proof of [Kal19] Proposition 2.17 defines (see also [DFG04] p. 711) the ho-
momorphism α : HomA(M,N)→ Ext1CI

A
(M,N) as follows: Given f ∈ HomA(M,N) one defines an

extension N ⊕f M as follows: The module is given by N ⊕M with filtration (N ⊕M)i = N i⊕M i

and ϕi : (N ⊕M)i → N ⊕M defined by

(ni,mi) 7→ (ϕiN (n
i) + f(ϕiM (mi)), ϕiM (mi)).

One can show that any extension in Ext1CI
A
(M,N) is of the form N⊕fM for some f ∈ HomA(M,N).

We note that ψ̃ defined in the proof of the Proposition 4.9 maps this extension to the extension

HomA(M,N)⊕a7→af 1A.
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The commutative diagram (4.1) shows that this is well-defined and gives an isomorphism

ψ̃ : Ext1CI
A
(M,N)→ Ext1CI

A
(1A,HomA(M,N)).

Let us now give an alternative description of the map ψ̃. Starting with an extension

0→ N → E →M → 0

in CIA (note that as an A-module it is isomorphic to N ⊕M as N and M are free and by [Kal19]
we know there exists f ∈ HomA(M,N) such that it is explicitly given by N ⊕f M), it gives rise to
an exact sequence as A-modules (where we use freeness to conclude right exactness)

0→ HomA(M,N)→ HomA(M,E)→ HomA(M,M)→ 0.

This is an exact sequence in CIA since the maps preserve the extra structure (exactness of sequences
in CIA is equivalent to exactness as A-modules). Now take the pullback of this extension with respect
to A ↪→ HomA(M,M). More specifically we have the following commutative diagram with exact
rows:

(4.2) 0 // HomA(M,N)

id
��

// ψ̃(E)� _

��

// A� _

a7→(m 7→am)

��

// 0

0 // HomA(M,N) // HomA(M,E) // HomA(M,M) // 0

This realizes ψ̃(E) as a submodule of HomA(M,E) of in the following way:

ψ̃(N ⊕f M) = {h ∈ HomA(M,N ⊕M)|∃g ∈ HomA(M,N), a ∈ A such that h(m) = (g(m), am)}.

If one equips Hom(M,N ⊕fM) with the CIA-structure as in Definition 4.6 one can check that ψ̃(E)
corresponds to

HomA(M,N)⊕a7→af 1.

4.3. Fontaine-Laffaille Galois representations. Fix an interval I = [a, b] with a, b ∈ Z and
b− a ≤ ℓ− 2. In this subsection we introduce certain categories of GQℓ

-representations and define
a covariant version VI of the functor in [FL82] from the categories of Fontaine-Laffaille modules
defined in section 4.1 to these categories of Galois representations.

Let Acris and Bcris denote the usual Fontaine’s ℓ-adic period rings (see Definition 7.3 and 7.7
in [FO22] and [Fon82]). We recall that a Qℓ[GQℓ

]-module V is called crystalline if dimQℓ
V =

dimQℓ
H0(Qℓ, V ⊗Qℓ

Bcris). Our convention is that the Hodge-Tate weight of the cyclotomic char-
acter is +1.

Definition 4.11. Let A ∈ LCAO. We introduce the following categories:

(i) RepfZℓ
(GQℓ

), the category of Zℓ[GQℓ
]-modules that are finitely generated as Zℓ-modules.

(ii) Repftor,Zℓ
(GQℓ

), the full subcategory of RepfZℓ
(GQℓ

) whose objects are required to be of finite

length as Zℓ[GQℓ
]-modules.

(iii) Repcris,IZℓ
(GQℓ

), the full subcategory of RepfZℓ
(GQℓ

) whose objects are isomorphic to T/T ′,

where T and T ′ areGQℓ
-stable finitely generated submodules of a crystallineQℓ-representation

with Hodge-Tate weights in I.

(iv) Repcris,Itor,Zℓ
(GQℓ

), the full subcategory of Repftor,Zℓ
(GQℓ

) whose objects are isomorphic to T/T ′,

where T and T ′ are GQℓ
-stable lattices in a crystalline Qℓ-representation with Hodge-Tate

weights in I. We refer to the objects in Repcris,IZℓ
(GQℓ

) as torsion crystalline representations

(with weights in I).
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(v) Repcris,Ifree,A(GQℓ
), the category of free finite rank A-modulesM with an A-linear GQℓ

-action, for

which there exists a crystalline representation of GQℓ
defined over E with Hodge-Tate weights

in I containing GQℓ
-stable O-lattices T ′ ⊂ T , and an O-algebra map A→ EndO(T/T

′) such
that M is isomorphic as an A[GQℓ

]-module to T/T ′. We will call objects of this category
Fontaine-Laffaille A-representations (with weights in I).

Remark 4.12. Definition 4.11(v) matches Definition 2.1 in [Kal19] .

Definition 4.13 ([BK90] p. 363, [Boo19] Definition 4.7+4.9). Similar to [Boo19] we define the
following two functors.

(i) A covariant functor Tcris :MF
f,[2−ℓ,0]
Zℓ

→ RepfZℓ
(GQℓ

) defined via

Tcris(M) := ker
(
1− ϕ0Acris⊗Zℓ

M : Fil0(Acris ⊗Zℓ
M)→ Acris ⊗Zℓ

M
)
.

(ii) A covariant functor VI :MF
f,[a,b]
Zℓ

→ RepfZℓ
(GQℓ

), defined via

(4.3) VI(M) = Tcris(M(−b))(−b).

Recall that M(−b) was defined in Definition 4.5, while (−b) on the outside denotes the Tate
twist as defined in Section 2.1.

Remark 4.14. We note that for ? ∈ {∅, tor} the category MF
f,[a,b]
?,Zℓ

is a full subcategory of

MF
f,[a,a+ℓ−2]
?,Zℓ

, since they are both full subcategories of MF f?,Zℓ
(cf. Definition 4.1), so in particular

(4.3) makes sense.

Remark 4.15. Note that VI extends Tcris to general I (in particular V[2−ℓ,0] = Tcris). Also observe

that for M ∈MF
f,[a,b]
tor,Zℓ

we have M(−b) ∈MF
f,[2−ℓ,0]
tor,Zℓ

since M(−b)1 =M b+1 = 0 and M(−b)2−ℓ =
M2−ℓ+b =M as b+ 2− ℓ ≤ a. In particular, the definition of VI makes sense.

Compared to [Boo19] we work with the more restrictive interval [2− ℓ, 0] for Tcris and correct a
sign error in the Galois twist in [Boo19] Definition 4.9.

Theorem 4.16 ([BK90] Theorem 4.3, [Niz93] Section 2, [DFG04] Section 1.1.2, [Hat19] Section
2.2, [Boo19] Fact 4.10, [Kal19] Theorem 2.10). We have:

(i) The covariant functor V[a,b] :MF
f,[a,b]
Zℓ

→ RepfZℓ
(GQℓ

) is well-defined, exact and fully faithful.

(ii) For M ∈MF
f,[a,b]
Zℓ

one has V[a,b](M) = lim←−
n

V[a,b](M/ℓn).

(iii) The essential image of V[a,b] is closed under formation of sub-objects, quotients and finite

direct sums. It is given by the subcategory Rep
cris,[−b,−a]
Zℓ

(GQℓ
). For M ∈MF

f,[a,b]
tor,Zℓ

the lengths

of M and VI(M) as Zℓ-modules agree; in particular the essential image of MF
f,[a,b]
tor,Zℓ

under

V[a,b] is Rep
cris,[−b,−a]
tor,Zℓ

(GQℓ
).

(iv) For A ∈ LCAO, the functor V[a,b] induces a functor from MF
f,[a,b]
tor,Zℓ

⊗Zℓ
A to the category of

free finite rank A-modules with an A-linear GQℓ
-action, which we will also denote by V[a,b].

Its essential image is given by Rep
cris,[−b,−a]
free,A (GQℓ

). In fact, V[a,b] gives an equivalence of

categories between MF
f,[a,b]
tor,Zℓ

⊗Zℓ
A and Rep

cris,[−b,−a]
free,A (GQℓ

).

Remark 4.17.

(1) Note that for M ∈MF
f,[a,b]
tor,Zℓ

we have V[a+s,b+s](M(s)) = V[a,b](M)(−s).
(2) For I = [a, b] = [0, ℓ − 2] the functor VI agrees with that of the functor V in [DFG04] p.

670 by [Bre98] Proposition 3.2.1.7.
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(3) For M ∈ MF
f,[a,b]
tor,Zℓ

⊗Zℓ
A the Hodge-Tate weights of VI(M) (in the sense of Definition

4.11(3)) equal the negatives of the Fontaine-Laffaille weights of M , defined in Definition
4.1(3), due to our convention that the Hodge-Tate weight of the cyclotomic character is +1.

Example 4.18. For n ∈ [2 − ℓ, 0] and A ∈ LCAO we have that Tcris(Mn,A) = A(−n), where
(−n) denotes the Tate twist as defined in Section 2.1. In particular, for any n ∈ Z ∩ [a, b] we

get V[a,b](Mn) = Fℓ(−n) = Fℓ(−n+ 1− ℓ), but Mn ∈ MF
f,[a,b]
tor,Zℓ

, whereas Mn(ℓ − 1) = Mn+ℓ−1 ∈
MF

f,[a+ℓ−1,b+ℓ−1]
tor,Zℓ

.

As an immediate consequence of the equivalence of categories in Theorem 4.16(iv) we obtain the
following corollary.

Corollary 4.19. For any M,N ∈MF f,Itor,Zℓ
⊗Zℓ

A there is an isomorphism of A-modules

(4.4) Ext1
MF f,I

tor,Zℓ
⊗Zℓ

A
(M,N) ∼= Ext1

Repcris,−I
A (GQℓ

)
(VI(M), VI(N)).

4.4. Local Selmer groups. Let I = [a, b] be an interval as in the previous section (so 0 ≤ b−a ≤
ℓ− 2) but we now also require that 0 ∈ I (so that 1 ∈MF f,IZℓ

, see Definition 4.4).

For an extension between two objects M,N in RepA(GQℓ
)

0→M → E → N → 0

we define the n-th Tate twist of the extension to be the extension

0→M(n)→ E(n)→ N(n)→ 0.

For a subgroup G of Ext1RepA(GQℓ
)(M,N) we define G(n) to consist of extensions which are the

n-th Tate twists of the elements of G.
Given an extension E ∈ Ext1

MF f,I
tor,Zℓ

⊗Zℓ
A
(M3,M1) represented by an exact sequence

0→M1 →M2 →M3 → 0

we will write VI(E) for the extension in Ext1
Repcris,−I

free,A (GQℓ
)
(VI(M3), VI(M1)) represented by

0→ VI(M1)→ VI(M2)→ VI(M3)→ 0.

This uses the exactness of the functor VI (cf. Theorem 4.16(i)).
Since we defined VI(M) = Tcris(M(−b))(−b) (see Equation (4.3)) we conclude the following

lemma:

Lemma 4.20. For A ∈ LCAO and M ∈MF f,Itor,Zℓ
⊗Zℓ

A we have

VI(Ext
1
MF f,I

tor,Zℓ
⊗Zℓ

A
(1A,M)) = Ext1

Repcris,−I
free,A (GQℓ

)
(Tcris(M−b,A)(−b), Tcris(M(−b))(−b)) ∼=

∼= Ext1
Rep

cris,[0,ℓ−2]
free,A (GQℓ

)
(A(b), Tcris(M(−b)))(−b).

Note that the latter is naturally isomorphic to Ext1
Rep

cris,[0,ℓ−2]
free,A (GQℓ

)
(A(b), Tcris(M(−b))) and they

give rise to the same subgroup of H1(Qℓ, VI(M)), see Definition 4.21.

Definition 4.21. For M ∈ MF f,Itor,Zℓ
⊗Zℓ

A let H1
f,I(Qℓ, VI(M)) = VI(Ext

1
MF f,I

tor,Zℓ
⊗Zℓ

A
(1A,M)) ⊂

H1(Qℓ, VI(M)).

Remark 4.22. Lemma 4.20 shows that all the extensions in H1
f,I(Qℓ, VI(M)) arise from objects

in Ext1
MF

f,[2−ℓ,0]
tor,Zℓ

, in particular, extensions between representations of Hodge-Tate weights in the

interval [0, ℓ− 2].
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Remark 4.23. (1) This is a more precise version of the definition made in [BK13] Section
5.2.1. In [BK13] we worked (implicitly) with I = [0, p−2], but the results in [BK13] Section
5 (in particular Corollary 5.4 and Proposition 5.8 restated below) carry over to H1

f,I defined
here for general I.

(2) T.B. and K.K. would like to clarify how certain definitions and results in some of our
papers fit in with this more precise description of the groups H1

f,I : In [BK19] the relevant

interval I is I = [1 − k, k − 1] for Section 5, and the bound on the prime p should be
strengthened to p− 1 > 2k− 2. The examples in Section 6 of [loc. cit] satisfy this stronger
condition. Similarly in [BK20] the relevant interval is I = [3 − 2k, 2k − 3] and p should
satisfy p − 1 > 4k − 6 (instead of p > 2k − 2). This stronger bound should be used for
Theorem 10.2, but does not affect the paramodular conjecture application for k = 2 since
we had excluded p = 3 already in Proposition 2.10. In [BK13] Section 6 the suitable
interval I is such that HomO(ρ̃2, ρ̃1) has Hodge-Tate weights in I. The Selmer groups
which we refer to are H1

Σ(F,HomF(ρi, ρj)) for i, j ∈ {1, 2}, for which the local condition is
H1
f,I(Fv,HomF(ρ̃i, ρ̃j)) for v | p. In [loc.cit.] Section 9 the relevant interval is I = [−1, 1],

with corresponding bound p−1 > 2 (which is already assumed). In [loc.cit.] Section 10 the
relevant interval is I = [1 − k, k − 1], and the correct bound is p − 1 > 2k − 2. In [BK15]
Sections 7 and 8 the same comment applies as for [BK13] Section 9.

In J.B.’s paper [Bro07] the argument in sections 8 and 9 to show the splitting at ℓ of(
ϵk−2 ∗
0 ϵk−1

)
by relating it to H1

f (Qℓ,F(−1)) = 0 requires an interval I containing −1 and

2k − 3, so would need p − 1 > 2k − 2. However, one could instead not twist and invoke
Proposition 4.8 to deduce the splitting directly from Fontaine-Laffaille theory.

(3) Similar comments apply to other results in the literature, e.g. in [DFG04] Corollary 2.3
the expression H1

f (Qℓ, ad
0
κL) is only indirectly defined by H1

f (Qℓ, adκL) = H1
f (Qℓ, ad

0
κL)⊕

H1
f (Qℓ, κ). To define the Selmer group for the trace zero endomorphisms and prove this

identity requires ad0κ to lie in the essential image of the Fontaine-Laffaille functor, and
therefore I = [1 − k, k − 1] should be specified, rather than I = [0, ℓ − 2] as in [DFG04]
Section 1.1.2.

If M,N ∈ Repcris,Ifree,A(GQℓ
), then M ⊕N ∈ Repcris,Ifree,A(GQℓ

) and it is clear that

(4.5) H1
f,I(Qℓ,M ⊕N) = H1

f,I(Qℓ,M)⊕H1
f,I(Qℓ, N)

because the extension groups as well as the functor VI commute with direct sums.

Proposition 4.24. For any n ∈ [2− ℓ, ℓ− 2] such that 0,−n ∈ I the group H1
f,I(Qℓ, VI(M−n)) is

independent of I. In fact we have

H1
f,I(Qℓ,F(n)) =


0 n < 0

H1
un(Qℓ,F) n = 0

H1
fl(Qℓ, µℓ) n = 1

H1(Qℓ,F(n)) n > 1,

where

H1
un(Qℓ,F) := ker(H1(Qℓ,F)→ H1(Iℓ,F)) ∼= Hom(GQℓ

/Iℓ,F)

and H1
fl(Qℓ, µℓ) denotes the peu ramifiée classes, namely those classes corresponding to Z×

ℓ /(Z
×
ℓ )

ℓ ⊂
Q×
ℓ /(Q

×
ℓ )

ℓ ∼= H1(Qℓ,F(1)). For n ≥ 0 we note that dimFH
1
f,I(Qℓ,F(n)) = 1.
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Remark 4.25. (1) Proposition 4.24 justifies writing H1
Σ(Qℓ, VI(Mn)) as we did in [BK19],

without specifying the interval I, as long as I contains −n. Under the conditions of Propo-
sition 4.27 (see comment after Proposition 5.1), once we have fixed a suitable interval I we
will also drop the subscript I in this paper.

(2) Note that the definition of H1
f,I(Qℓ, VI(Mn)) depends on n ∈ Z, even though the coefficients

VI(Mn) = F(n) only depend on n mod ℓ− 1.
(3) [Niz93] Section 9.3 states a version of this result for the local crystalline cohomology of

unramified extensions of Qℓ and with Zℓ/ℓ
m(n) coefficients for m ∈ Z>0.

Proof. We first note that H1(Qℓ,F(n)) is 1-dimensional for n ̸= 0, 1, which follows from local Tate
duality and the Euler characteristic formula, see e.g. [Was97] Theorem 1 and Proposition 3.

For n = 0 we refer the reader to [CHT08] Corollary 2.4.4 for identifying H1
f,I(Qℓ,F(n)) with

H1
un(Qℓ,F). That H

1
un(Qℓ,F) is 1-dimensional follows since #H1(GQℓ

/Iℓ,F) = #H0(Qℓ,F).
Since 0 ∈ I we know b ≥ 0. If I = [a, b] and n < 0 (in particular −n ̸∈ [2− ℓ, 0]) then

H1
f,I(Qℓ, VI(M−n,F)) = VI(Ext

1
MF f,I

tor,Zℓ
⊗Zℓ

F
(M0,F,M−n,F)).

By Proposition 4.8(ii) Ext1
MF f,I

tor,Zℓ
⊗Zℓ

F
(M0,F,M−n,F) = 0 since the Fontaine-Laffaille weights satisfy

the inequality −n > 0.
On the other hand, if n > 0 then

H1
f,I(Qℓ, VI(M−n)) = VI(Ext

1
MF f,I

tor,Zℓ
⊗Zℓ

F
(M0,F,M−n,F))

is 1-dimensional by Proposition 4.8(i) since −n < 0. For n > 1 this equals H1(Qℓ,F(n)) by our
observation at the start of the proof.

For n = 1 we have H1(Qℓ,F(1)) ∼= Q×
ℓ /(Q

×
ℓ )

ℓ is 2-dimensional, and one can identify the
Fontaine-Laffaille extensions with the peu ramifiée classes (see e.g. [Bre01] Lemma 8.1.3). □

Remark 4.26. Note that [2− ℓ, 0] contains both 0 and 2− ℓ (and is the only interval of this length
that contains both). Then since F(−1) = F(ℓ− 2) = V[2−ℓ,0](M2−ℓ) we get

H1
f,[2−ℓ,0](Qℓ,F(−1)) = H1

f,[2−ℓ,0](Qℓ,F(ℓ− 2)) = H1
f,[2−ℓ,0](Qℓ, V[2−ℓ,0](M2−ℓ)) ̸= 0,

corresponding to the crystalline non-split extension

(
ϵℓ−2 ∗
0 1

)
. Note that 1 /∈ [2 − ℓ, 0], so this

does not contradict the result in Proposition 4.24 that H1
f,I(Qℓ,F(−1)) = 0 for I as in Proposition

4.24.
However for all other intervals I ⊂ [2− ℓ, ℓ− 2] of length ℓ− 2 we have 1 ∈ I and so then

H1
f,I(Qℓ,F(−1)) = VI(Ext

1

MF
f,[a,b]
tor,Zℓ

(M0,M1)) = Tcris(Ext
1

MF
f,[2−ℓ,0]
tor,Zℓ

(M−b,M1−b))(−b) = 0

as per Proposition 4.24.
This demonstrates that H1

f,I(Qℓ,F(n)) is only independent of I for I containing −n.

Following [BK90] we define for a Qℓ[GQℓ
]-module V

H1
f (Qℓ, V ) = ker

(
H1(Qℓ, V )→ H1(Qℓ, V ⊗Qℓ

Bcris)
)
,

where Bcris is Fontaine’s ring of ℓ-adic periods, see [Fon82].
Let V be a finite-dimensional E-vector space and T ⊂ V a GQℓ

-stable O-lattice, i.e., T is a
free O-submodule of V that spans V as a vector space over E. We set W = V/T and W [λm] =

{w ∈ W : λmw = 0} ∼= T/λmT for any m ∈ Z>0. Note that W [λm] lies in Repcris,−IO/λm (GQℓ
) if V is

crystalline with Hodge-Tate weights in −I. We let H1
f (Qℓ,W ) be the image of H1

f (Qℓ, V ) under

the natural map H1(Qℓ, V )→ H1(Qℓ,W ).
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Proposition 4.27 ([DFG04] Proposition 2.2). Assume V is a crystalline E[GQℓ
]-module as above

with Hodge-Tate weights in −I = [−b,−a] (and 0 ∈ I). For T ⊂ V and W = V/T as above we
then have H1

f (Qℓ,W ) = lim−→
m

H1
f,I(Qℓ,W [λm]).

Proof. We note that the proof of [DFG04] Proposition 2.2 carries over from [0, ℓ − 2] to general
I (in particular one has Proposition 4.7) and apply the argument with (in their notation) V1 the
trivial GQℓ

-representation and V2 = V . □

Corollary 4.28 ([DFG04] (33), [BK13] Corollary 5.4). For every m ∈ Z>0 we have an exact
sequence of O-modules

0→ H0(Qℓ,W )/λm → H1
f,I(Qℓ,W [λm])→ H1

f (Qℓ,W )[λm]→ 0.

Corollary 4.29. For n ∈ Z with 0, n ∈ I ⊂ [2− ℓ, ℓ− 2] and n ̸= 0 we have

H1
f,I(Qℓ, VI(M−n,F)) = H1

f (Qℓ, E/O(n))[λ].

Proof. Note thatH0(Qℓ, E/O(n)[λ]) = 0 since n ̸≡ 0 mod ℓ−1. This impliesH0(Qℓ, E/O(n)) = 0,
hence we are done by Corollary 4.28. □

5. Selmer Groups

5.1. Definitions. For M a topological Zℓ[GQ]-module we set

H1
un(Qp,M) := ker

(
H1(Qp,M)→ H1(Ip,M)

)
for every prime p.

Let E/Qℓ be a finite extension with valuation ring O, uniformizer λ, and residue field F = O/λ.
Let V be a finite dimensional E-vector space on which one has a continuous E-linear GQ action.
For finite primes p with p ̸= ℓ, we set

H1
f (Qp, V ) = H1

un(Qp, V ).

For p = ℓ, we recall from Section 4 that

H1
f (Qℓ, V ) = ker

(
H1(Qℓ, V )→ H1(Qℓ, V ⊗Qℓ

Bcris)
)
.

Let T ⊂ V be a GQ-stable O-lattice, i.e., T is a free O-submodule of V that spans V as a vector
space over E. We set W = V/T and W [λn] = {w ∈ W : λnw = 0} ∼= T/λnT . For every p we let
H1
f (Qp,W ) be the image of H1

f (Qp, V ) under the natural map H1(Qp, V )→ H1(Qp,W ). We have

H1
f (Qp,W ) = H1

un(Qp,W ) for all p ̸= ℓ, as long as V is unramified at p, which for us will always
be the case.

We define the global Selmer group of W as

H1
f (Q,W ) = ker

{
H1(Q,W )→

⊕
p

H1(Qp,W )

H1
f (Qp,W )

}
.

We note that as H1
f (Qℓ,W ) commutes with direct sums and so clearly does H1

un(Qℓ,W ), we get

that H1
f (Q,W ) does as well.

Let I = [a, b] with a, b ∈ Z and b − a ≤ ℓ − 2 and assume that 0 ∈ I. If V is crystalline with
Hodge-Tate weights in −I we define

H1
f,I(Q,W [λn]) = ker

H1(Q,W [λn])→
⊕
p ̸=ℓ

H1(Qp,W [λn])

H1
un(Qp,W [λn])

⊕ H1(Qℓ,W [λn])

H1
f,I(Qℓ,W [λn])

 .

As noted in (4.5)H1
f (Qℓ,W [λn]) also commutes with direct sums and so we get thatH1

f,I(Q,W [λn])
does as well.

We record a slight strengthening of [BK13] Proposition 5.8:
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Proposition 5.1. Assume that the interval I = [a, b] contains 0 and V is a E[GQ-module which is
finite-dimensional as an E-vector space and crystalline as a GQℓ

-module with Hodge-Tate weights
in −I. If H0(Q,W [λ]) = 0 then we have

H1
f (Q,W )[λn] ∼= H1

f,I(Q,W [λn]).

Proof. [BK13] Proposition 5.8 proves the claim under the assumption H0(Q,W ) = 0.
Suppose we have α ∈ H0(Q,W ). We know every element of W is annihilated by some power of

λ, so if α ̸= 0 there is an integer m so that λmα = 0 but λnα ̸= 0 for all 0 < n < m. However, this
gives λm−1α ∈ H0(Q,W [λ]) = 0, so it must be that α = 0. Thus, H0(Q,W ) = 0 as desired.

□

After a suitable interval I has been fixed we will therefore also drop the subscript I and write
H1
f (Q,W [λn]).
Let G be a group, R a commutative ring with identity, and Mi finitely generated free R-modules

with R-linear action given by ρi : G → GLR(Mi) for i = 1, 2. The action of G on HomR(ρ2, ρ1) is
given by

(g · φ)(v) = ρ1(v)φ(ρ2(g
−1)v).

In particular, if ρ1 = ρ2 = ρ, we define the adjoint representation of ρ to be the R[G]-module
ad ρ = HomR(ρ, ρ). We write ad0 ρ for the R[G]-submodule of ad ρ consisting of endomorphisms of
trace zero.

If ρ is of rank n and 2n ∈ R× then we have an isomorphism of R[G]-modules

(5.1) ad ρ ∼= ad0 ρ⊕R.

5.2. Non-vanishing of a Selmer group. In this section we explain how the congruence of
a Siegel cuspform to the Klingen Eisenstein series in Section 3 leads to a non-zero element of
H1
f (Q, ad

0(ρϕ,λ)(2− k)⊗ E/O).
From now on, we fix the weight k > 4 even and the prime ℓ satisfying ℓ > 4k − 5 and impose

Assumption 3.1 on the field E/Qℓ. Let ϕ ∈ Sk(Γ1) be a normalized eigenform. Let ρϕ be the λ-adic
Galois representation associated to ϕ and assume ρϕ is irreducible. Let f ∈ Sk(Γ2) be an eigenform

with irreducible Galois representation ρf so that f is eigenvalue congruent to E2,1
ϕ modulo λ.

The following result shows we can choose a lattice so that the residual Galois representation
gives rise to a non-split extension.

Lemma 5.2. There exists a GQ-stable lattice in the space of ρf such that with respect to this lattice

ρf =

[
ρϕ ∗

ρϕ(k − 2)

]
̸∼= ρϕ ⊕ ρϕ(k − 2).

Proof. Using the compactness of GQ one can show that there exists a GQ-stable lattice Λ′ in the
space of ρf . In other words, there exists a GL4(E)-conjugate ρf,Λ′ of ρf which has image in GL4(O).
As

tr ρf (Frobp) ≡ tr ρϕ(Frobp) + tr ρϕ(k − 2)(Frobp) (mod λ)

for all primes p ̸= ℓ one uses Brauer-Nesbitt Theorem together with the Chebotarev Density
Theorem to conclude that ρssf,Λ′ = ρϕ ⊕ ρϕ(k − 2). Now the existence of the desired lattice which

gives the non-split extension follows from Theorem 4.1 in [BK20]. □

From now on, whenever we write ρf , we assume we have made a choice of lattice as in Lemma
5.2, so we consider ρf as a map from GQ to GL4(O).

We now choose the interval I = [3− 2k, 2k− 3] so that it contains all the Hodge-Tate weights of
ρf , ρϕ, ρϕ(k−2), ad ρϕ(2−k), and ad ρϕ(k−2). Note that −I = I. We assume that ℓ−2 ≥ 4k−6.
When we write H1

f from now on this refers to H1
f,I as defined in Section 5.1.
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Let ρ be any of the representations above and write V for the representation space of ρ. We
choose a GQ-stable lattice T ⊂ V and recall that the isomorphism class of the semi-simplification
of the F[GQ]-representation T/λT is independent of the choice of T . It is well-known that if T/λT
is irreducible then the O-length of H1

f (Q,W ) is independent of T , where as before W = V/T . By

Proposition 5.1 we then conclude that also the O-length of H1
f (Q,W [λn]) is independent of the

choice of T as long as H0(Q,W ) = 0.

Lemma 5.3. Under our assumptions (in particular, ρϕ irreducible and ℓ > 4k − 5) the mod λ

reduction of ad0 ρϕ is irreducible.

Proof. Assume the three-dimensional representation ad0 ρϕ is reducible. Then it either has a one-

dimensional GQ-stable subspace or quotient. Since ad ρϕ and 1 are self-dual, so is ad0 ρϕ. Hence we

can assume without loss of generality that ad0 ρϕ has a GQ-stable line. Write ψ for the character
by which GQ acts on the line.

As ρϕ is unramified away from ℓ, the splitting field of ψ must be a subfield of Q(ζℓ∞). As the
order of ψ is prime to ℓ, this splitting field must be a subfield of Q(µℓ), so ψ = ϵa for some integer
a ∈ I.

This would require H0(Q, ad0 ρϕ(−a)) ̸= 0. Note that

H0(Q, ad ρϕ(−a)) = HomGQ
(ρϕ(a), ρϕ).

If a ≡ 0 (mod (ℓ−1)), then this space is one-dimensional by Schur’s Lemma since ρϕ is irreducible.

So, H0(Q, ad0 ρϕ) = 0, contradiction.
If a ̸≡ 0 (mod (ℓ− 1)), then

H0(Q, ad ρϕ(−a)) = H0(Q, ad0 ρϕ(−a)) ̸= 0.

This means that ρϕ is isomorphic to ρϕ(a). Considering the determinant, ϵa must be the trivial

character or the quadratic character ϵ(ℓ−1)/2. Both are ruled out since a ∈ I = [3 − 2k, 2k − 3] by
our assumption that ℓ > 4k − 5. □

Remark 5.4. From Lemma 5.3 we conclude that when ρ ∈ {ρϕ, ρϕ(k−2), ad0 ρϕ(2−k), ad0 ρϕ(k−
2)}, the O-length of H1

f (Q,W ) and H1
f (Q,W [λn]) are independent of the choice of T . As we will

ever only be interested in the order of these groups, the choice of T is immaterial and we will simply
assume that such a choice was made. So, for example we will use the notation H1

f (Q, ad
0 ρϕ,λ(k −

2)⊗E/O), thus assuming that when we write ad0 ρϕ,λ(k−2), we have made a choice of a lattice for
this representation. Likewise any one-dimensional representation ρ is irreducible, so the O-length
of H1

f (Q, ρ⊗ E/O) is independent of the choice of T .

For the representation ad ρ(m), m ∈ {k− 2, 2−k} (which is reducible) we choose a lattice which
is a direct sum of a lattice inside ad0 ρ(m) and a lattice inside E(m). So, from now on whenever we
write ad ρ(m) we mean such a lattice. Since the formation of Selmer groups commutes with direct
sums we then get
(5.2)
H1
f (Q, ad ρϕ(m)⊗ E/O) = H1

f (Q, ad
0 ρϕ(m)⊗ E/O)⊕H1

f (Q, E/O(m)) for m ∈ {k − 2, 2− k}.

Note that the O-length (and in particular, the non-triviality) of H1
f (Q, ad ρ(m)⊗E/O) is indepen-

dent of the choice of a lattice inside ad ρϕ(m) as long as it is the direct sum of lattices in ad0 ρϕ(m)
and E(m).

Theorem 5.5. With the set-up as above we have H1
f (Q, ad ρϕ(2− k)⊗ E/O) ̸= 0.
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Proof. We have via Lemma 5.2 that there is a lattice Tf ⊂ Vf so that the residual representation
ρf : GQ → GL4(F) has the form

(5.3) ρf =

[
ρϕ ψ
0 ρϕ(k − 2)

]
and is not semisimple. The fact that ψ as in (5.3) gives a non-trivial class [ψ] inH1(Q,HomF(ρ2, ρ1)) =
H1(Q, ad ρϕ(2−k)⊗E/O[λ]) is clear. We need to show that [ψ] lies in H1

f (Q, ad ρϕ(2−k)⊗E/O[λ])
and that the latter group injects into H1

f (Q, ad ρϕ(2− k)⊗ E/O).
We first show that [ψ] satisfies the conditions to be in H1

f (Q, ad ρϕ(2− k)⊗ E/O[λ]). We have
that ρf is unramified at all primes p ̸= ℓ, so the local conditions are satisfied for all primes p ̸= ℓ.

Since f has level one and weight k, ρf |Dℓ
is crystalline with Hodge-Tate weights in [0, 2k − 3] ⊂

I = −I. Hence ρf (considered as a GQℓ
-module) belongs to Repcris,Ifree,F(GQℓ

) and gives rise to an

element of

Ext1
Repcris,Ifree,F(GQℓ

)
(ρϕ(k − 2), ρϕ) ⊂ Ext1F[GQℓ

](ρϕ(k − 2)⊗ E/O[λ], ρϕ ⊗ E/O[λ]).

By our choice of I we can use (4.4) and Proposition 4.9 to get a non-zero element in

Ext1
Repcris,Ifree,F(GQℓ

)
(F, ad ρϕ(2− k)⊗ E/O[λ]) ⊂ Ext1F[GQℓ

](F, ad ρϕ(2− k)⊗ E/O[λ]).

As this extension maps to [ψ|GQℓ
] in H1(Qℓ, ad ρϕ(2 − k) ⊗ E/O[λ]) under the canonical iso-

morphism Ext1F[GQℓ
](F, ad ρϕ(2 − k) ⊗ E/O[λ]) ∼= H1(Qℓ, ad ρϕ(2 − k) ⊗ E/O[λ]), we conclude

that

[ψ|GQℓ
] ∈ H1

f (Qℓ, ad ρϕ(2− k)⊗ E/O[λ]) ⊂ H1(Qℓ, ad ρϕ(2− k)⊗ E/O[λ]).
Therefore we have established that

[ψ] ∈ H1
f (Q, ad ρϕ(2− k)⊗ E/O[λ]).

By Proposition 5.1 this group is isomorphic to H1
f (Q, ad ρϕ(2 − k) ⊗ E/O)[λ] if H0(Q, ad ρϕ(2 −

k)⊗ E/O[λ]) = 0. The latter holds since

(5.4) ad ρϕ(2− k)⊗ E/O[λ]GQ = HomGQ
(ρϕ(k − 2), ρϕ) = 0

as ρϕ and ρϕ(k − 2) are absolutely irreducible (by assumption) and non-isomorphic since k − 2 ̸≡
0, ℓ−1

2 (mod ℓ− 1) as ℓ > 4k − 5 and k ̸= 2 (cf. the proof of Lemma 5.3).
□

Lemma 5.6. Let n be an even integer satisfying 3− 2k < n ≤ 0. Assuming ℓ ∤ #Clϵ
n

Q(ζℓ)+
, one has

H1
f (Q,F(n)) = 0 and, if additionally n ̸= 0, H1

f (Q, E/O(n)) = 0.

Proof. We see from Proposition 4.24 that any cohomology class in H1
f (Q,F(n)) must vanish when

restricted to Iℓ. As all classes in H1
f (Q,F(n)) are unramified away from ℓ, we therefore get that

they are unramified everywhere. Using inflation-restriction sequence where H = Gal(Q(ζℓ)
+/Q)

we see that

H1(Q,F(n)) ∼= H1(Q(ζℓ)
+,F(n))H = HomH(GQ(ζℓ)+ ,F(n)).

Note that everywhere unramified classes map to homomorphisms that kill all the inertia groups.

Hence the image of H1
f (Q,F(n)) lands inside Hom

(
Clϵ

n

Q(ζℓ)+
,F

)
= 0.

Note that a torsion O-module M is zero if and only if M [λ] = 0. Therefore the vanishing of
H1
f (Q, E/O(n)) follows from Proposition 5.1, which tells us that H1

f (Q, E/O(n))[λ] = H1
f (Q,F(n))

if H0(Q, E/O(n)) = 0. We know that H0(Qℓ, E/O(n)[λ]) = H0(Q,F(n)) = 0 for n ̸= 0 since n ̸≡ 0
(mod ℓ− 1) under our assumption ℓ > 4k − 5. □
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Corollary 5.7. Let ϕ ∈ Sk(Γ1) be as in Theorem 3.5 and assume the hypotheses of Theorem 3.5

are satisfied. Assuming ℓ ∤ #Clϵ
2−k

Q(ζℓ)+
one has H1

f (Q, ad
0 ρϕ(2− k)⊗ E/O) ̸= 0.

Proof. This follows from Theorem 5.5, Lemma 5.6 and isomorphism (5.2). □

Remark 5.8. If we assume Vandiver’s conjecture for the prime ℓ, this gives that ℓ ∤ #Clϵ
2−k

Q(ζℓ)+
.

Thus, we obtain the following corollary.

Corollary 5.9. Let ϕ ∈ Sk(Γ1) be as in Theorem 3.5 and assume the hypotheses of Theorem 3.5
are satisfied. Furthermore, assume Vandiver’s conjecture is true for the prime ℓ. Then we have

ℓ | #H1
f (Q, ad

0 ρϕ(2− k)).

6. Modularity

We begin with the following commutative algebra result that will be useful in this section.

Lemma 6.1. If J is an ideal of F[[X1, . . . , Xn]] that is strictly contained in the maximal ideal,
then F[[X1, . . . , Xn]]/J admits an F-algebra surjection to F[T ]/T 2.

Proof. For a positive integer k let Ik be the ideal of F[[X1, . . . , Xk]] generated by all the monomials
of degree at least 2. Set Sk := F[[X1, . . . , Xk]]/Ik and write ϕk : F[[X1, . . . , Xk]] → Sk for the
canonical F-algebra surjection. If ϕn(J) = 0, then composing ϕn with the map Sn → F[[T ]]/T 2

sending X1 to T and Xi for i > 1 to zero gives the desired surjection.
Now suppose ϕn(J) ̸= 0. Without loss of generality (renumbering the variables if necessary) we

may assume then that J contains an element of the form u := Xn+f(X1, . . . , Xn−1)+g(X1, . . . , Xn),
where f is homogeneous of degree one and all the terms in g have degree at least 2. Note that we
can assume without loss of generality that some power of Xn appears in g. (Indeed, if g contains no
Xn then we replace u by u+u2 ∈ J .) By Theorem 7.16(a) in [Eis95] there is a unique F-algebra map
from F[[X1, . . . , Xn]] to itself sending Xn to −f − g and Xi to itself for i < n. In other words, for
any power series h(X1, . . . , Xn), the element h(X1, . . . , Xn−1,−f − g) also lives in F[[X1, . . . , Xn]]
and we denote it by h′(X1, . . . , Xn). Clearly h− h′ ∈ J .

Thus for any power series h where the smallest total degree of any term containing Xn is s we
have

h ≡ h′ (mod J)

for some power series h′ with the smallest total degree of any term containing Xn equal to s′ > s.
By the same process we get an h′′ such that h′ ≡ h′′ mod J and the smallest total degree of any
term Xn in h′′ is strictly greater than s′. This way we can construct a sequence of power series hs
where for every s we have the smallest total degree of any term containing Xn being greater than or
equal to s and such that h−hs ∈ J for every s. We note that hs is a Cauchy sequence with respect
to the (X1, . . . , Xn)-adic topology (indeed, for t, u > s we see that ht − hu lies in (X1, . . . , Xn)

s).
Set h0 = lims→∞ hs. As J is a closed ideal, we get that h0 − h ∈ J . For every s we have

h0 ≡ hs ≡ ws mod Xs
n,

for some ws ∈ F[[X1, . . . , Xn−1]]. Note that the ws also form a Cauchy sequence since hs does. Set
w := lims→∞ws ∈ F[[X1, . . . , Xn−1]]. Thus h0 ≡ w modulo

⋂
s(X

s
n) ⊂

⋂
s(X1, . . . , Xn)

s = 0, so
h0 ∈ F[[X1, . . . , Xn−1]].

Hence the natural F-algebra map ψn−1 : F[[X1, . . . , Xn−1]]→ F[[X1, . . . , Xn]]/J given by h0 7→
h0+J is surjective. Thus we get an F-algebra isomorphism F[[X1, . . . , Xn]]/J → F[[X1, . . . , Xn−1]]/Jn−1,
where Jn−1 = kerψn−1.

If ϕn−1(Jn−1) ̸= 0, continue this way obtaining a sequence of ideals Jn−2, Jn−3, .... If at any stage
(1 ≤ r ≤ n− 2) we get ϕn−r(Jn−r) = 0, then we are done. Otherwise we can eliminate all but one
variable and get F[[X1, . . . , Xn]]/J ∼= F[[X1]]/J1 and now we must have ϕ1(J1) = 0 as otherwise
J1 and hence J is maximal. □
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Recall that in the earlier sections we fixed the weight k > 4 even and prime ℓ > 4k−5 and imposed
Assumption 3.1 on the field E/Qℓ. We also fixed the Fontaine-Laffaille interval I = [3−2k, 2k−3].
Let ϕ ∈ Sk(Γ1) be a newform such that ρϕ is irreducible.

The goal of this section is to prove a modularity theorem under the following assumption:

Assumption 6.2. For k, and ϕ as above we assume that

(i) there exists f ∈ Sk(Γ2) such that f ≡ev E
2,1
ϕ (mod λ), and

(ii) #H1
f (Q, ad

0ρϕ(2 − k) ⊗O E/O) = #O/λ (recall that the left hand side is independent of

the choice of lattice, see Remark 5.4), and
(iii) H1

f (Q, ad
0 ρϕ) = 0.

We impose Assumption 6.2 and fix f as in Assumption 6.2 in what follows.

Remark 6.3. Assumption 6.2 (i) is satisfied under the assumptions of Theorem 3.5, and so is one
inequality in Assumption 6.2 (ii) under the assumptions of Corollary 5.9.

As before we denote the ℓ-adic Galois representation attached to f by ρf : GQ → GL4(E) (see
Theorem 2.1). In particular, such ρf is unramified away from ℓ. Lemma 3.4 gives that ρf is
irreducible.

We will write G{ℓ} for the Galois group of the maximal Galois extension of Q unramified away
from ℓ. Clearly the representation ρf factors through G{ℓ}.

We will use Mazur’s deformation theory which is well-known, and we refer the reader to standard
references such as [CSS97, Ram93] for the definitions and basic properties.

Definition 6.4. For B ∈ LCNO we say that a representation ρ : GQℓ
→ GLn(B) is Fontaine-

Laffaille (with Hodge-Tate weights in −I) if ρ⊗B A lies in Repcris,−Ifree,A (GQℓ
) (see Definition 4.11(v))

for every Artinian quotient A of B. By Theorem 4.16(iv) this is equivalent to requiring ρ⊗B A to
lie in the essential image of the Fontaine-Laffaille functor.

Remark 6.5. We know that any choice of O-lattice ρL in ρϕ or ρf is Fontaine-Laffaille in this

sense, since their restrictions to GQℓ
lie in Repcris,−IZℓ

(GQℓ
) and therefore in the essential image of

the Fontaine-Laffaille functor by Theorem 4.16(iii). Since they are also free O-modules this implies

by Theorem 4.16 (iii) and (iv) that ρL⊗B lies in Repcris,−Ifree,A (GQℓ
) for every Artinian quotient B of

O.
For any local complete Noetherian O-algebra A with residue field F by a deformation of a

residual Galois representation τ : G{ℓ} → GLn(F) we will mean a strict equivalence class of lifts
τ̃ : G{ℓ} → GLn(A) of τ that are Fontaine-Laffaille at ℓ. This deformation condition is introduced
in [BK13] Section 5.3 and [CHT08] p.35.

As is customary, we will denote a strict equivalence class of deformations by any of its members.
If τ has scalar centralizer then this deformation problem is representable by a local complete
Noetherian O-algebra which we will denote by Rτ [Ram02]. In particular, the identity map in
HomO−alg(Rτ , Rτ ) furnishes what is called the universal deformation τuniv : G{ℓ} → GLn(Rτ ).

Lemma 6.6. One has Rρϕ
∼= Rρϕ(k−2)

∼= O. Furthermore, ρϕ (resp. ρϕ(k − 2)) is the unique

deformation of ρϕ (resp. ρϕ(k − 2)) to GL2(O).
Proof. We have

(6.1) #HomO−alg(Rρϕ ,F[X]/X2) = #H1
f (Q, ad ρϕ) = 0,

where the first equality follows from the fact that our deformation condition is the property of
being Fontaine-Laffaille (see e.g., Section 2.4.1 [CHT08]), and the second one holds since we have
H1
f (Q, ad ρϕ) = H1

f (Q, ad
0 ρϕ)⊕H1

f (Q,F) = 0 andH1
f (Q,F) = 0 by Lemma 5.6 as we have imposed

Assumption 6.2(iii).
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By Theorem 7.16 in [Eis95] we know that any local complete Noetherian O-algebra with residue
field F is a quotient of O[[X1, . . . , Xn]] for some positive integer n. Hence S := Rρϕ/(λRρϕ)

∼=
F[[X1, . . . , Xn]]/J for some ideal J . Suppose first that J is not maximal. Then by Lemma 6.1 we
know that S admits a surjection φ to F[T ]/T 2. This contradicts (6.1), hence S = F. We now
use the complete version of Nakayama’s Lemma to conclude that the structure map O → Rρϕ is

surjective (cf. [Eis95], Exercise 7.2 or [Mat89] Theorem 8.4). Let us briefly explain why this version
applies here. As Rρϕ ⊗O F ̸= 0, we see that λ ∈ m, where m is the maximal ideal of Rρϕ . Hence

(6.2)
⋂
n

λnRρϕ ⊂
⋂
n

mn.

The latter intersection is zero, since Rρϕ is complete, so separated with respect to m. Hence (6.2)
implies that Rρϕ is separated with respect to λRρϕ allowing for the application of the complete
version of Nakayama’s Lemma.

As ρϕ is a deformation to O, we conclude that Rρϕ = O. This implies that if ρ : G{ℓ} → GL2(O)
is any deformation of ρϕ, one has ρ ∼= ρϕ. Similarly, if ρ : G{ℓ} → GL2(O) is a deformation of
ρϕ(k − 2) then ρ(2− k) is a deformation of ρϕ. Note that our choice of I = [3− 2k, 2k − 3] means
that this twisting stays inside our category of Fontaine-Laffaille representations. Hence we get that
ρ(2− k) ∼= ρϕ, and so we are done. □

Remark 6.7. Note that the determinant of our deformations is automatically fixed asH1
f (Q, ad ρϕ) =

H1
f (Q, ad

0 ρϕ) under our assumptions. This means that all deformations ρ of ρϕ (respectively

ρϕ(k − 2)) satisfy det ρ = ϵk−1 (respectively det ρ = ϵ2k−3).

Remark 6.8. Regarding Assumption 6.2(iii) we note that if one additionally assumes that ρϕ is

absolutely irreducible when restricted to Gal(Q/Q(
√
(−1)(ℓ−1)/2ℓ) then [DFG04] Theorem 3.7 (see

also [Hid00] Theorem 5.20) relates H1
f (Q, ad

0ρϕ⊗E/O) (via an Rρϕ = T theorem) to a congruence

ideal η∅ϕ. One can use Proposition 5.1 this implies that H1
f (Q, ad

0 ρϕ) = H1
f (Q, ad

0ρϕ⊗E/O)[λ] = 0

if η∅ϕ is coprime to ℓ.

Lemma 6.9. Let G be a group and F be a field. For i ∈ {1, 2}, let ni ∈ Z+ and ρi : G→ GLni(F )
be an irreducible representation with ρ1 ̸∼= ρ2. Let ρ : G → GLn1+n2(F ) be a representation such
that

ρ =

[
ρ1 a

ρ2

]
̸∼= ρ1 ⊕ ρ2.

Then ρ has scalar centralizer.

Proof. Note that ã : g → ρ2(g)
−1a(g) defines a cocycle from G to Hom(ρ2, ρ1). The fact that ρ

is non-semi-simple implies that ã is not a coboundary. For i, j ∈ {1, 2} let Ai,j ∈ Matn1,n2(F ) be

such that

[
A1,1 A1,2

A2,1 A2,2

]
centralizes ρ. Using the fact that ρ1, ρ2 are irreducible and non-isomorphic

one gets that A2,1 = 0. Then Schur’s Lemma gives us that A1,1 = αIn1 and A2,2 = δIn2 for scalars
α, δ. Finally one gets

(6.3) αa+A1,2ρ2 = ρ1A1,2 + aδ.

If α ̸= δ, then one gets

ã =
1

α− δ
(ρ1A1,2ρ

−1
2 −A1,2),

contradicting the fact that it is not a coboundary. Thus α = δ and (6.3) now gives that A1,2 = 0. □

Fix a lattice in the space of ρf as in Lemma 5.2, i.e. such that ρf =

[
ρϕ ∗

ρϕ(k − 2)

]
: G{ℓ} →

GL4(F) is non-semisimple. For simplicity, we will write R for the universal deformation ring Rρf of
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ρf and ρuniv : G{ℓ} → GL4(R) for the universal deformation. Note that the deformation problem
is representable because ρf is non-semisimple with irreducible, mutually non-isomorphic Jordan-
Holder factors, hence by Lemma 6.9 the centralizer of ρf consists of only scalar matrices. We say
that a deformation ρ̃ is upper-triangular if ρ̃ is strictly equivalent to a deformation of ρf of the form[

∗ ∗
0 ∗

]
with the stars representing 2× 2 blocks.

Lemma 6.10. There do not exist any non-trivial deformations of ρf into GL4(F[X]/X2) that are
upper-triangular.

Proof. We use Proposition 7.2 in [BK13] noting that Assumption 6.1(i) in [loc.cit.] is satisfied
because we impose the current Assumption 6.2(ii). On the other hand, Assumption 6.1(ii) in
[loc.cit.] is satisfied because of Lemma 6.6. □

Definition 6.11. The smallest ideal I of R such that tr ρuniv is the sum of two pseudocharacters
mod I will be called the reducibility ideal of R. We will denote this ideal by Ire.

Proposition 6.12. Let I ⊂ R be an ideal such that R/I is an Artin ring. Then I ⊃ Ire if and
only if ρuniv (mod I) is upper-triangular.

Proof. This is proved as Corollary 7.8 in [BK13]. □

Corollary 6.13. The structure map O → R/Ire is surjective and descends to an isomorphism
O/λs → R/Ire for some s ∈ Z≥0 ∪ {∞}. In fact, one has

R/Ire ∼= O/λ.

Proof. By Theorem 7.16 in [Eis95] we know that any local complete Noetherian O-algebra with
residue field F is a quotient of O[[X1, . . . , Xn]] for some positive integer n. Hence S := R/(Ire +
λR) ∼= F[[X1, . . . , Xn]]/J for some ideal J . Suppose first that J is not maximal. Then by Lemma
6.1 we know that S admits a surjection φ to F[T ]/T 2. This means that there exists a non-trivial
(because the image of φ is not contained in F) deformation of ρ to F[T ]/T 2 which is upper-triangular
(by Proposition 6.12), which contradicts Lemma 6.10. Thus, indeed, S = F.

Hence, R/Ire is generated by one element over O by the complete version of Nakayama’s Lemma
(one can argue as in the proof of Lemma 6.6 to justify that this version applies). This proves that
the structure map O → R/Ire is surjective and so R/Ire ∼= O/λs for some s ∈ Z≥0 ∪ {∞}.

The composition of ρuniv with the map R → R/Ire gives rise to a deformation ρre : G{ℓ} →
GL4(R/Ire) = GL4(O/λs). By Proposition 6.12, this deformation is upper triangular, i.e., one has

ρre =

[
∗1 ∗2
∗3

]
.

As the property of being Fontaine-Laffaille is preserved by subobjects and quotients, we see that
∗1 and ∗3 are Fontaine-Laffaille representations with values in GL2(R/Ire) = GL2(O/λs). Thus by
Lemma 6.6 we can conclude that

∗1 = ρϕ, ∗3 = ρϕ(k − 2) (mod λs).

Thus by (5.4) and Proposition 5.1 ∗2 gives rise to a class in H1
f (Q, ad

0ρϕ(2 − k) ⊗O E/O) as ρre
is Fontaine-Laffaille. As ρ is non-semi-simple, we conclude that ∗2 is not annihilated by λs−1, i.e.,
the class of ∗2 gives rise to a subgroup of H1

f (Q, ad
0ρϕ(2− k)⊗O E/O) isomorphic to O/λs. Thus

s ≤ 1 as #H1
f (Q, ad

0ρϕ(2− k)⊗O E/O) ≤ #O/λ by Assumption 6.2(ii). Finally, s > 0 as ρf itself
is reducible. This concludes the proof. □

The following Proposition does not use Assumption 6.2(ii).
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Proposition 6.14. Assume that dimH1
f (Q, ad ρϕ(k − 2)) ≤ 1. Then the ideal Ire is a principal

ideal.

Proof. Since ρuniv is a trace representation in the sense of Section 1.3.3 of [BC09] Lemma 1.3.7 in
[loc.cit.] tells us that we can conjugate ρuniv by a matrix P ∈ GL2(R) (here we use that every finite
type projective R-module is free since R is local) to get ρuniv adapted to a data of GMA idempotents
for R[G{ℓ}]/ ker ρ

univ. By [BC09] Lemma 1.3.8 we then get an isomorphism of R-modules

R[G{ℓ}]/ ker ρ
univ ∼=

[
Mat2(R) Mat2(B)
Mat2(C) Mat2(R)

]
for ideals B,C ⊂ R. By [BC09] Proposition 1.5.1 we further know that Ire = BC.

[BC09] Theorem 1.5.5 proves that there are injections

HomR(B,F) ↪→ H1(G{ℓ}, ad ρϕ(2− k))
and

HomR(C,F) ↪→ H1(G{ℓ}, ad ρϕ(k − 2)).

Arguing as in [Ake23] Proposition 4.2 (see also [WWE19] Theorem 4.3.5 and Remark 4.3.6) one sees
that the images are contained in the Selmer groups H1

f (Q, ad ρϕ(2− k)) and H1
f (Q, ad ρϕ(k − 2)),

respectively. From Assumption 6.2 (ii) and Proposition 5.1 we see that H1(Q, ad ρϕ(2 − k)) ∼= F.

Together with the assumption dimH1
f (Q, ad ρϕ(k− 2)) ≤ 1 we deduce by Nakayama’s Lemma that

both B and C, and therefore also Ire are principal ideals of R. Note that Nakayama’s Lemma
applies since B and C are ideals in R, which is Noetherian, hence they are finitely generated over
R. □

Remark 6.15. Note that there is a natural anti-involution on R[G{ℓ}] given by g 7→ ϵ2k−3(g)g−1,
however it swaps ρϕ with ρϕ(k−2), so the results of section 2 of [BK13] guaranteeing the principality
of the reducibility ideal do not apply in this case.

[Ake23] Proposition 3.10 proves the principality of the reducibility ideal of the reduced Fontaine-
Laffaille deformation ring Rred for any residual representations with two Jordan-Hölder factors.
Our argument (whilst relying on [Ake23] Proposition 4.2) is slightly more general as it allows us to
treat the case of non-reduced deformation rings.

Remark 6.16. By (5.2) we have

H1
f (Q, ad ρϕ(k − 2)) = H1

f (Q, ad
0 ρϕ(k − 2))⊕H1

f (Q,F(k − 2)).

However, as opposed to the case of the (2−k)-twist of the trivial representation (cf. proof of Lemma
5.6), there is no simple relation between H1

f (Q,F(k − 2)) and part of a class group except for the

case k = 2 by Proposition 4.24. By the same Proposition for 2 < k ≤ ℓ the group H1
f (Q,F(k − 2))

requires no ramification condition at ℓ, so equals H1(G{ℓ},F(k − 2)).

We have the following results about H1(G{ℓ},F(n)) for n > 0:

Proposition 6.17 ([BK19] Proposition 6.5). Suppose n ∈ Z>0 and n ̸≡ 1 mod ℓ − 1. Assume
that ℓ ∤ #Clϵ

n

Q(ζℓ)
. Then dimH1(G{ℓ},F(n)) ≤ 1.

Proposition 6.18. Let n > 0 be an even integer. Assume ℓ ∤ Bn (the n-th Bernoulli number) and
n ̸≡ 0 mod ℓ− 1. Then H1(G{ℓ},F(n)) = 0.

Proof. Since n is even and H0(G{ℓ},F(n)) = 0 as n ̸≡ 0 mod ℓ−1 we know dimFH
1(G{ℓ},F(n)) =

dimFH
2(G{ℓ},F(n)) by [NSW08] Corollary 8.7.5 (Euler Poincare characteristic). [Ass95] Proposi-

tion 1.3 (condition (ii, β)) proves that H2(G{ℓ},F(n)) = 0 if n ̸≡ 1 mod ℓ− 1 (which is automat-

ically satisfied for even n) and ℓ ∤ #Clϵ
1−n

Q(ζℓ)
. By Herbrand’s Theorem (see e.g. [Was82] Theorem

6.17) the latter follows from our assumption that ℓ ∤ Bn (here we use again n ̸≡ 0 mod ℓ− 1). □
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Remark 6.19. Note that the assumption ℓ ∤ Bn is stronger than ℓ ∤ #Clϵ
n

Q(ζℓ)
in [BK19] Proposition

6.5. As noted in the proof of Proposition 6.18 ℓ ∤ Bn implies ℓ ∤ #Clϵ
ℓ−n

Q(ζℓ)
by Herbrand’s Theorem.

By the “reflection theorem” [Was82] Theorem 10.9 this means that also ℓ ∤ ClϵnQ(ζℓ)
.

This allows us to prove the following modularity theorem.

Theorem 6.20. Recall that we impose Assumptions 3.1 and 6.2. Furthermore, assume that
dimH1

f (Q, adρϕ(k − 2)) ≤ 1. Then the structure map ι : O → R is an isomorphism. In par-

ticular, if τ : GQ → GL4(E) is any continuous irreducible homomorphism unramified outside ℓ,
crystalline at ℓ with Hodge-Tate weights in [3− 2k, 2k − 3] and such that

τ ss = ρϕ ⊕ ρϕ(k − 2),

then τ ∼= ρuniv ∼= ρf , i.e., in particular τ is modular.

Proof. It follows from Corollary 6.13 that Ire is a maximal ideal of R. As the deformation ρf
induces a surjective map j : R→ O, we get the following commutative diagram of O-algebra maps

(6.4) O ι
//

id

))

��

R
j

//

��

O

��

O/λ ι //

id

44R/Ire
j
// O/λ

As ι is an isomorphism, we get that so is j. So, using the fact that Ire is principal (Proposition 6.14),
we can now apply Theorem 6.9 in [BK11] to the right square to conclude that j is an isomorphism.

Now, let τ be as in the statement of the Theorem. Then τ factors through a representation of
G{ℓ}. Using that τ is irreducible, Theorem 4.1 in [BK20] allows us to find a lattice in the space of
τ such that with respect to that lattice one has

τ =

[
ρϕ ∗

ρϕ(k − 2)

]
that is non-semi-simple. Using Remark 6.5 we see that this lattice is Fontaine-Laffaille, so the star
gives rise to a non-zero element in H1

f (Q, ad
0ρϕ(2 − k) ⊗O E/O). As the latter group has order

#O/λ by Assumption 6.2(ii), we conclude that τ ∼= ρ. In particular, τ is a deformation of ρ. Hence
τ gives rise to an O-algebra map R→ O, which must equal j by the first part of the theorem. □

Remark 6.21. We note that unlike in many minimal deformation problems, the definition of R
does not require that the deformations have a fixed determinant, but rather this is a consequence
of Theorem 6.20.

Remark 6.22. We return to Example 3.6 and note that Assumption 6.2 (i) holds, as discussed
earlier. Since ℓ = 163 or 187273 do not divide (2k − 1)(2k − 3)k! for k = 26 and ρϕ is irreducible,

[DFG04] Lemma 2.5 proves that ρϕ stays irreducible when restricted to Gal(Q/Q(
√
(−1)(ℓ−1)/2ℓ).

Via Remark 6.8 we can therefore check that H1
f (Q, ad

0 ρϕ) = 0 as ϕ is the only cuspform of
weight 26 and level 1, so in particular, ϕ is not congruent mod ℓ to other forms. Since in addition
Lalg(50, Sym

2ϕ) has ℓ-valuation 1 for both ℓ = 163 and 187273 the Bloch-Kato conjecture for

#H1
f (Q, ad

0ρϕ(2 − k) ⊗ E/O) = #O/λ (see [Dum09] Conjecture (5.2) and (5)) would imply that

Assumption (ii) holds.
We do not know how to check dimH1

f (Q, adρϕ(k − 2)) ≤ 1, as the corresponding divisible

Selmer group is not critical (in the sense of Deligne). Note that dimH1
f (Q, adρϕ(k − 2)) =

dimH1
f (Q, ad

0ρϕ(k − 2)) by Proposition 6.18 since neither prime ℓ divides B24.
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7. (Non-)principality of Eisenstein ideals

In this section we will formulate conditions under which the Eisenstein ideal of the local Hecke
algebra acting on Sk(Γ2) is non-principal and

dimFH
1
f (Q, ad

0 ρϕ(k − 2)) > 1.

In particular, in that case R ̸∼= O.
Recall in section 2 we defined T′ to be the Z-subalgebra of EndC(Sk(Γ2)) generated by the

Hecke operators T (2)(p) and T
(2)
1 (p2) for all primes p. Let T denote the O-subalgebra of T′ ⊗Z O

generated by the operators T (2)(p) and T
(2)
1 (p2) for all primes p ∤ ℓ. Since strong multiplicity one

holds in the level one case, we can choose an orthogonal basis N ′ of Sk(Γ2) consisting of eigenforms
for all the operators in T.

Each g ∈ N ′ gives rise to an element ψg of the finite set HomO−alg(T,O) where ψg(T ) = λg(T ),
with λg(T ) the eigenvalue of the operator T corresponding to g. Thus we get a map Ψ : N ′ →
HomO−alg(T,O) given by g 7→ λg, which by strong multiplicity one (which holds for level Γ2) is an
injection.

Lemma 7.1. The natural O-algebra map

(7.1) T→
∏
g∈N ′

O given by T 7→ (ψg(T ))g

is injective and has finite cokernel, i.e. T can be viewed as a lattice in
∏
g∈N ′ O.

Proof. Any t ∈ T in the kernel of this map kills every g ∈ N ′. As the elements of N ′ form a basis
of Sk(Γ2), the operator t is the zero endomorphism. This proves injectivity.

We will now show that the map has finite cokernel. Note that the (set) map Ψ ⊗ Qℓ : N ′ →
HomQℓ−alg(T ⊗Qℓ,Qℓ) ↪→ HomQℓ

(T ⊗Qℓ,Qℓ) given by g 7→ λg ⊗Qℓ is injective (because Ψ is

injective). Suppose there is a linear relation
∑

g∈N ′ cgλg = 0. Consider the form g0 =
∑

g∈N ′ cgg ∈
Sk(Γ2). It is clear that g0 is an eigenform for all the operators in T⊗Qℓ with all eigenvalues zero.
By strong multiplicity one we conclude that g0 = 0. As the elements of N ′ (being an orthogonal
basis of Sk(Γ2)) form a linearly independent set, we get that cg = 0 for all g ∈ N ′. Thus the set

{λg | g ∈ N ′} is a linearly independent subset of HomQℓ
(T⊗Qℓ,Qℓ). Hence

(7.2) dimQℓ
T⊗Qℓ = dimQℓ

HomQℓ
(T⊗Qℓ,Qℓ) ≥ #N ′.

Tensoring the map (7.1) with Qℓ we get a corresponding map T ⊗ Qℓ →
∏
g∈N ′ Qℓ, which is

injective because (7.1) is. Thus it must also be surjective by (7.2). Hence the map (7.1) has finite
cokernel. □

We now identify T with the image of the map (7.1). We note that T is a semi-local, complete,
reduced O-algebra and one has the following decomposition

T =
∏

m∈MaxSpecT

Tm,

where Tm is the localization of T at the maximal ideal m. Let N be the subset of N ′ consisting of
all the g ∈ N ′ which satisfy

ψg(T ) ≡ λE1,2
ϕ

(T ) (mod λ) for all T ∈ T.

Then there is a maximal ideal m ∈ MaxSpecT such that the map T→
∏
g∈N ′ O →

∏
g∈N O factors

through Tm. We fix this m from now on.
Set J ⊂ T to be the Eisenstein ideal, i.e., J is the ideal of T generated by the set

{T (2)(p)− (tr ρϕ(Frobp) + tr ρϕ(k − 2)(Frobp)) | p ̸= ℓ}.
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Write Jm to be the image of J under the canonical map T→ Tm.
Recall that we fixed in Section 5.2 the weight k > 4 even and prime ℓ > 4k − 5 and imposed

Assumption 3.1 on the field E/Qℓ. We also fixed the Fontaine-Laffaille interval I = [3−2k, 2k−3].
Let ϕ ∈ Sk(Γ1) be a newform such that ρϕ is irreducible.

For the rest of this section we also impose Assumption 6.2 and fix the corresponding f ∈ Sk(Γ2).
Then f ∈ N , i.e., Tm/Jm ̸= 0. Let R = Rρf be the universal deformation ring defined in Section 6.

Theorem 7.2. Recall that we impose Assumptions 3.1 and 6.2. Then there exists a surjective
O-algebra map φ : R→ Tm such that φ(Ire) = Jm and Jm is a maximal ideal of Tm. If, in addition
dimFH

1
f (Q, adρϕ(k − 2)) ≤ 1, then all of the following are true:

• the map φ is an isomorphism;
• the Hecke ring Tm is isomorphic to O;
• the Eisenstein ideal Jm is principal.

Proof. Let g ∈ N . Then by Lemma 5.2 there exists a GQ-stable lattice with respect to which

one has ρg =

[
ρϕ ∗

ρϕ(k − 2)

]
and is not semi-simple. Hence the ∗ gives rise to an element in

H1
f (Q,W [λ]), where W = ad0ρϕ(2− k)⊗O E/O.
By (5.4) and Proposition 5.1 we get H1

f (Q,W [λ]) = H1
f (Q,W )[λ]. The latter group is cyclic by

Assumption 6.2 (ii), so we must have that ρg
∼= ρf , and so after adjusting the basis if necessary we

get that ρg is a deformation of ρf .
This implies that for every g ∈ N we get an O-algebra (hence continuous) map φg : R→ O with

the property that tr ρuniv(Frobp) 7→ λg(T
(2)(p)). This property completely determines φg because

R is topologically generated by the set {tr ρuniv(Frobp) | p ̸= ℓ} by Proposition 7.13 in [BK13].
Putting these maps together we get an O-algebra map φ : R →

∏
g∈N O whose image is an O-

subalgebra of
∏
g∈N O generated by {T (2)(p) | p ̸= ℓ}. We now claim that this subalgebra equals

Tm. Indeed, one clearly has φ(R) ⊂ Tm. To see the opposite inclusion consider the characteristic
polynomial fp(X) ∈ R[X] of ρuniv(Frobp) for p ̸= ℓ. Combining Theorem 2.1 with the definition of

Lp(X, f ; spin) we see that the coefficient at X2 is mapped by φ to T (2)(p)2 − T (2)
1 (p2) − p2k−4 ∈∏

g∈N O. As T (2)(p) and p2k−4 both belong to φ(R), so therefore must T
(2)
1 (p2). Hence φ(R)

contains all the Hecke operators away from ℓ, i.e., φ(R) = Tm. We denote the resulting O-algebra
epimorphism R→ Tm again by φ. We claim that φ(Ire) ⊂ Jm.

Indeed, as φ(tr ρuniv(Frobp)) = T (2)(p) and

T (2)(p)− (tr ρϕ(Frobp) + tr ρϕ(k − 2)(Frobp)) ∈ Jm

for all primes p ̸= ℓ, one has

tr ρuniv(Frobp)− (tr ρϕ(Frobp) + tr ρϕ(k − 2)(Frobp)) ∈ φ−1(Jm).

By the Chebotarev Density Theorem, this implies that

tr ρuniv ≡ tr ρϕ + tr ρϕ(k − 2) (mod φ−1(Jm)),

so Ire ⊂ φ−1(Jm). As φ is a surjection, this implies that φ(Ire) ⊂ Jm. Hence φ gives rise to a
sequence of O-algebra surjections R/Ire → Tm/φ(Ire) → Tm/Jm. As R/Ire = F by Corollary 6.13
we conclude that all these surjections are isomorphisms (note that Tm/Jm ̸= 0), hence φ(Ire) = Jm
and Jm is maximal. This proves the first claim.

Now assume in addition that dimH1
f (Q, adρϕ(k − 2)) ≤ 1. Then Theorem 6.20 gives us that

R = O, so we get that φ is an isomorphism, and so R ∼= Tm
∼= O. In particular, Jm is a principal

ideal. □
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Corollary 7.3. If Jm is not principal, then

dimFH
1
f (Q, ad ρϕ(k − 2)) > 1.

If in addition ℓ ∤ Bk−2 then
dimFH

1
f (Q, ad

0 ρϕ(k − 2)) > 1.

Proof. The first inequality is just a restatement of one of the claims of Theorem 7.2. The second
follows from the first one and Proposition 6.18. □

The latter can potentially be done by counting the depth of Eisenstein congruences as the
following result shows.

Proposition 7.4. For each g ∈ N write mg for the largest positive integer m such that g ≡ Eϕ2,1
mod λm. If

(7.3) valℓ(#Tm/Jm) < [F : Fℓ] ·
∑
g∈N

mg

then Jm is not principal.

Proof. Set A =
∏
g∈N Ag, where Ag = O for all g ∈ N . Let ϕg : A → Ag be the canonical

projection. Since by Lemma 7.1 T is a full rank O-submodule of
∏
g∈N ′ O we conclude that the

local complete O-subalgebra Tm ⊂ A is of full rank as an O-submodule and Jm ⊂ Tm is an ideal
of finite index. Set Tg = ϕg(Tm) = Ag = O and Jg = ϕg(Jm) = λmgO. Hence we are in the setup
of section 2 of [BKK14]. Assume Jm is principal. Then Proposition 2.3 in [BKK14] gives us that

(7.4) #Tm/Jm =
∏
g∈N

#Tg/Jg.

Note that one has

(7.5) valℓ

∏
g∈N

#Tg/Jg

 = [F : Fℓ] ·
∑
g∈N

mg.

This equality together with (7.4) contradicts the inequality (7.3). □

Corollary 7.5. Let mg be defined as in Proposition 7.4. If

(7.6)
∑
g∈N

mg > 1

then Jm is not principal and
dimFH

1
f (Q, ad ρϕ(k − 2)) > 1.

If in addition ℓ ∤ Bk−2 then
dimFH

1
f (Q, ad

0 ρϕ(k − 2)) > 1.

Proof. Note that from the proof of Theorem 7.2 we get that Tm/Jm = F, even without assuming
dimFH

1
f (Q, ad ρϕ(k−2)) ≤ 1. Assume that Jm is principal. Then from (7.4) and (7.5) we conclude

that
∑

g∈N mg = 1, which contradicts assumption (7.6). Hence Jm is not principal.
The Selmer group inequalities now follow from Corollary 7.3. □

Remark 7.6. Corollary 7.3 directly ties the cyclicity of the Selmer group H1
f (Q, ad ρϕ(k−2)) with

the principality of the Eisenstein ideal Jm. We note that Assumption 6.2(ii) implies the equality

Tm/Jm = F. Contrary to what one might think, the existence of several forms g ≡ Eϕ2,1 mod λ does
not preclude this equality. For example, if there are exactly two linearly independent eigenforms
g1, g2 ∈ N with mg1 = mg2 = 1 such that g1 ̸≡ g2 mod λ2 then Tm

∼= O ×F O = {(a, b) ∈ O ×O |
a ≡ b mod λ} and in this case Jm is the maximal ideal, i.e. Tm/Jm = F, so Corollary 7.5 applies
and dimFH

1
f (Q, ad ρϕ(k − 2)) > 1.
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